Adjustable Frequency Drives

CPX9000

2.1 NFX9000 Drives

Product Description . V6-T2-2
Product Selection
V6-T2-3
2.2 M-Max Series Adjustable Frequency AC Drives

Product Description
V6-T2-8
Product Selection
V6-T2-9
2.3 SVX9000 Drives

Product Overview . V6-T2-14
SVX9000 Open Drives
Product Description . V6-T2-17
Product Selection . V6-T2-19
SVX9000 Enclosed Drives
Product Description . V6-T2-52
Product Selection . V6-T2-55
SVX9000 VFD Pump Panels
\quad Product Description .
Product Selection . V6-T2-80
2.4 SPX9000 Drives

Product Description . V6-T2-98
Product Selection . V6-T2-101
2.5 H-Max Series Drives

Product Overview
V6-T2-138
H-Max Drives
Product Description . V6-T2-139
Product Selection . V6-T2-141
H-Max IntelliPass and IntelliDisconnect Drives
Product Description
V6-T2-149
Product Selection
V6-T2-151
2.6 CFX9000 Drives

Product Description
V6-T2-159
Product Selection
V6-T2-168
2.7 CPX9000 Drives

Product Description
V6-T2-192
Product Selection . V6-T2-200
2.8 LCX9000 Drives

Product Description . V6-T2-222
Product Selection . V6-T2-224
2.9 SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products

Product Description
V6-T2-239
Product Selection V6-T2-243

NFX9000 Drives

Product Description

NFX9000 Adjustable Frequency AC Drives from Eaton's electrical sector are designed to provide adjustable speed control of three-phase motors. These microprocessor-based drives have standard features that can be programmed to tailor the drive's performance to suit a wide variety of application requirements.
The NFX9000 volts-per-hertz product line utilizes a 32-bit microprocessor and insulated gate bipolar transistors (IGBTs) which provide quiet motor operation, high motor efficiency and smooth low speed performance. The size and simplicity of the NFX9000 make it ideal for hassle free installation where size is a primary concern.

Models rated at 240 volts, single- or three-phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from $1 / 4$ to 2 hp . Models rated at 115 volts, single-phase, $50 / 60 \mathrm{~Hz}$ are available in the $1 / 4$ to $1 / 2 \mathrm{hp}$ size range.

The standard drive includes a digital display, operating and programming keys on the keypad.
The display provides drive monitoring as well as adjustment and diagnostic information. The keys are utilized for digital adjustment and programming of the drive as well as for operator control. Separate terminal blocks for control and power wiring are provided for customer connections. The drives feature RS-485 serial communications.

Contents

Description	Page
NFX9000 Drives	
Catalog Number Selection	V6-T2-3
Product Selection	V6-T2-3
Technical Data and Specifications	V6-T2-4
Wiring Diagrams	V6-T2-5
Dimensions	V6-T2-7

Features and Benefits

NFX9000 Adjustable Frequency AC Drives

Feature	Customer Benefit
V/Hz control	Provides 150\% starting torque and advanced low speed control
Clearly laid out and easy to understand keypad with four-character LED display, four status indicating LEDs, speed potentiometer, and five function keys	Most informative operator's interface in this class of VFD, provided as standard. All parameters, diagnostic information and metering values are displayed with a bright four-character LED display
One analog input, four programmable, intelligent digital inputs, one programmable relay	Provide enhanced application flexibility
Serial communication port (RS-485)	Direct connection to serial communications networks
Single-phase or three-phase input capability on 115/240 Vac rated units	Operate three-phase motor with single-phase supply

Standards and Certifications

- NEMA, IEEE, NEC: Design Standards
- UL Listed
- cUL Listed
- CE Marked

Catalog Number Selection

NFX9000 Drives

Product Selection

NFX9000	NFX9000 Basic Controller IP20				
$4 \pi 40$	Description hp ${ }^{(1)}$	Volts ${ }^{2}$	Input Ampere Single-/Three- Phase Rating	Continuous Output Ampere Rating	Catalog Number
me9 ${ }^{\text {a }}$	1/4	90-130	6.0/-	1.6	NFXF25A0-1
	1/2		9.0/-	2.5	NFXF50A0-1
	1/4	200-240	4.9/-	1.6	NFXF25A0-2
\triangle ¢ияпи	1/2		6.5/-	2.5	NFXF50A0-2
2anomene*	1		9.7/-	4.2	NFX001A0-2
	2		-/9.0	7	NFX002AO-2

Notes
(1) Horsepower ratings are based on the use of a 240 V or 480 V NEMA B, four- or six-pole squirrel cage induction motor and are for reference only. Units are to be selected such that the motor current is less than or equal to the NFX9000 rated continuous output current.
(2) For $208 \mathrm{~V}, 380 \mathrm{~V}$ or 415 V applications, select the unit such that the motor current is less than or equal to the NFX9000 rated continuous output current.

Technical Data and Specifications

2 General Specifications

NFX9000 Drives

Description	Specification
Output Ratings	
Horsepower	$\begin{aligned} & \text { 90V-132V: 1/4-1/2 hp } \\ & \text { 200-240V: 1/2-2 hp } \end{aligned}$
Frequency range	$0.1-400 \mathrm{~Hz}$
Overload rating	150\% for 60 seconds
Frequency resolution	Digital: 0.1 Hz
Frequency accuracy	Digital: $\pm 0.01 \%$ of max. frequency Analog: $\pm 0.2 \%$ of max. frequency
Undervoltage carryover limit	0.3 to 25 seconds
Motor Performance	
Motor control	V/Hz
Constant torque	Standard
Speed regulation	0.5\% of base speed
Input Power	
Voltage at $50 / 60 \mathrm{~Hz} \pm 3 \mathrm{~Hz}$	100V-120V: $-10 \%+10 \% /$ single-phase 200V-240V: $-10 \%+5 \% /$ single-phase 200V-240V: $-10 \%+5 \% /$ three-phase
Displacement power factor	Better than 0.95
Efficiency	Typically greater than 95\%
Design Type	
Microprocessor	32-bit
Converter type	Diode
Inverter type	Insulated gate bipolar transistor
Waveform	PWM Volts/Hertz
Environment	
Operating temperature	-10° to $40^{\circ} \mathrm{C}$
Humidity	20 to 90\% non-condensing
Maximum elevation	1000 meters (3300 ft)
Enclosure	
Standard	Protected chassis (IP20)
Protective Features	
Ground fault	Standard
Overload protection	Standard
Overcurrent	Standard
Overvoltage	Standard
Undervoltage	Standard
Overtemperature	Standard
Overload limit	Standard

Set Up Adjustments, Performance Features,
Operator Control and External Interface
Keypad

Description	Specification
Alphanumeric display	Standard, 1×4 character
Digital indications	RUN/STOP and FORWARD/REVERSE
Diagnostics	Last three trips with cause
LED status indicators	Four (RUN/STOP and FORWARD/REVERSE)
Operator functions	RUN/STOP, speed control (digital or potentiometer), RESET, MODE keys and ENTER

I/O Terminal Block

Description	Specification
Analog inputs	One input: 0-10 Vdc, 4-20 mA Potentiometer: 1 kohm to 2 kohm Analog voltage: Nominal 10 Vdc (10 kohm input impedance) $)$ Analog current: Nominal 4-20 mA (250 ohm)
Digital inputs	Four programmable inputs
Digital outputs	One Form A relay contact

Programmable Parameters

Description	Specification
Out of the box	Factory settings loaded for quick start-up
Accel. and decel.	2 separately adjustable Linear or S Curve times: 0.1-600 seconds
DC injection braking	©
External fault	Terminal input
Jog	Terminal input
Fault reset	STOP/RESET or terminal input
/O	NO-NC selectable
Jump frequencies	Three (with adjustable width)
Parameter security	Programmable software lock
Preset speeds	Two preset speeds
Reversing	Keypad or terminal
Speed setting	Keypad, terminal or pot
RUN/STOP control	Keypad or terminal
Stop modes	Decel, coast or DC injection

Reliability

Description	Specification
Pretested components	Standard
Surface mount technology	Standard (PCBs)
Computerized testing	Standard
Final test with full load	Standard
Eaton's Engineering	National network of AF drive specialists
Systems and Service	

Note

(1) The motor can be electronically stopped in the shortest possible time, without using an optical external braking resistor.

Watts Loss			
Catalog Number	Horsepower	Volts	Watts Loss $\mathbf{9 ~ k H z}$
NFXF25AO-1	$1 / 4$	115 Vac	20 W
NFXF50AO-1	$1 / 2$		20 W
NFXF25AO-2	$1 / 4$	230 Vac	20 W
NFXF50AO-2	$1 / 2$		20 W
NFX001A0-2	1		38 W
NFX002A0-2	2		75 W

Wiring Diagrams

Control Terminal Wiring (Factory Settings)

Wire Gauge: 22-24 AWG
Torque: $\quad 4 \mathrm{Kgf-cm}$

Adjustable Frequency Drives

NFX9000 Drives

Basic Wiring Diagram

Note: Do not plug a modem or telephone line to the RS-485 communication port, permanent damage may result. Terminals 1 and 2 are the power sources for the optional copy keypad and should not be used while using RS-485 communication.

- Use power terminals R/L1 and S/L2 for single-phase connection to models NFXF25A0-1, NFXF50A0-1, NFXF25A0-2, NFXF50A0-2 or NFX001A0-2.
- Use power terminals R/L1, S/L2 and T/L3 for three-phase connection to models NFXF25A0-2, NFXF50A0-2, NFX001A0-2 or NFX002A0-2.
- Single-phase power must not be used for model NFX002A0-2.

Dimensions

Approximate Dimensions in Inches (mm)

1/4 to 2 hp Drive

Adjustable Frequency Drives
M-Max Series Adjustable Frequency AC Drives

M-Max Series Drives for Machinery Applications

Product Description

Eaton's M-Max ${ }^{\text {TM }}$ Series Sensorless Vector Adjustable Frequency AC Drives are the next generation of drives specifically engineered for today's machinery applications. These micro-processor-based drives have standard features that can be programmed to tailor the drive's performance to suit a wide variety of application requirements. The M-Max product line uses a 32-bit microprocessor and insulated gate bipolar transistors (IGBTs) that provide quiet motor operation, high motor efficiency, and smooth lowspeed performance. The size and simplicity of the M-Max make it ideal for hassle-free installation. Models rated at 575 volts, three-phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from 1 to $7-1 / 2 \mathrm{hp}$. Models rated at 480 volts, three-phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from $1 / 2$ to 10 hp . Models rated at 240 volts, single- or three-phase, $50 / 60 \mathrm{~Hz}$ are available in sizes ranging from 1/4 to 3 hp . Models rated at 115 volts, single-phase, $50 / 60 \mathrm{~Hz}$ are available in the 1/4 to 1-1/2 hp size range.

The standard drive includes a digital display, and operating and programming keys on a visually appealing, efficient application programming interface. The display provides drive monitoring, as well as adjustment and diagnostic information. The keys are used for digital adjustment and programming of the drive, as well as for operator control. Separate terminal blocks for control and power wiring are provided for customer connections.

Contents

Description	Page
M-Max Series Adjustable Frequency AC Drive	
Catalog Number Selection	V6-T2-9
Product Selection	V6-T2-9
Accessories	V6-T2-10
Technical Data and Specifications	V6-T2-11
Dimensions	V6-T2-13

Features

- Ease of use—preset application macros, startup wizard, diagnostic capabilities
- Compact, space-saving design
- Rugged and reliable150% for one minute, 50 C rated, conformal coated boards
- DIN rail and screw mountable
- Side-by-side installation
- Industry leading efficiency delivers energy savings to the customer
- Integrated EMC filters make the unit suitable for commercial and industrial networks
- Available in the enclosure class IP20 as standard, options for IP21 and NEMA® 1
- Brake chopper as standard in three-phase, applications of frames 2 (FS2) and larger
- Temperature-controlled fan
- RS-485/Modbus ${ }^{\circledR}$ as standard
- PID controller as standard
- Several fieldbus options

Standards and Certifications

Product

- Complies with EN61800-3 (2004)

Safety ${ }^{\text {(1) }}$

- 61800-5-1
- EN60204-1
- CE
- UL
- cUL
- IEC
- RoHS compliant

EMC (At Default Settings)

- EMC Category C2, C3, and C4 (Level H): With an internal RFI filter option

Catalog Number Selection

Product Selection

| M-Max | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Notes

(1) Horsepower ratings are based on the use of a $240 \mathrm{~V}, 460 \mathrm{~V}$, and 575 V NEMA B, four- or six-pole squirrel cage induction motor and are for reference only. Units are to be selected such that the motor current is less than or equal to the MMX rated continuous output current.
(2) For $208 \mathrm{~V}, 380 \mathrm{~V}$, or 415 V applications, select the unit such that the motor current is less than or equal to the MMX rated continuous output current.
(3) For MMX11_, MMX32_, and MMX35_, there are no options for units with filters.

Adjustable Frequency Drives
M-Max Series Adjustable Frequency AC Drives

Accessories

M-Max Copy/Paste Module
Description Catalog Number

Module is plugged onto the front of the drive to provide: upload/download of all parameters, MMX-COM-PC direct link to a PC via USB interface for parameter assignment via MaxConnect software, and copying of parameters for a series of devices or when exchanging devices. No PC required

Kits (1)

Description	Catalog Number
Type 1 and IP21 kit for frame 1	MMX-IP21-FS1
Type 1 and IP21 kit for frame 2	MMX-IP21-FS2
Type 1 and IP21 kit for frame 3	MMX-IP21-FS3

Optional Communication Modules

Description	Catalog Number
Communication adapter kit	MMX-NET-XA
CANopen network card	XMX-NET-CO-A
PROFIBUS DP network card with serial connection	XMX-NET-PS-A
PROFIBUS DP network card with Sub-D connection	XMX-NET-PD-A
DeviceNet network card	XMX-NET-DN-A

Line Reactors (2)

Description	Catalog Number
$\mathbf{3 \%}$ Line Reactor, Single-Phase	
$1 / 2 \mathrm{hp}, 240 \mathrm{~V}$	K64-000988-8091
$1 \mathrm{hp}, 240 \mathrm{~V}$	K64-000988-0120
$2 \mathrm{hp}, 240 \mathrm{~V}$	K64-000988-0180
$3 \mathrm{hp}, 240 \mathrm{~V}$	K64-000988-0250
$\mathbf{3 \%}$ Line Reactor, Three-Phase	
$1 / 2 \mathrm{hp}, 240 \mathrm{~V}$	K64-000989-2091
$1 \mathrm{hp}, 240 \mathrm{~V}$	K64-000989-4091
$2 \mathrm{hp}, 240 \mathrm{~V}$	K64-000989-8091
$3 \mathrm{hp}, 240 \mathrm{~V}$	K64-000989-0120
$1 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-2091
$2 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-4091
$3 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-4091
$5 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-8091
$7-1 / 2 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-0180
$10 \mathrm{hp}, 480 \mathrm{~V}$	K64-000989-0250
$1 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-2091
$2 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-8091
$3 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-8091
$5 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-4091
$7-1 / 2 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-0180
$10 \mathrm{hp}, 575 \mathrm{~V}$	K64-000989-0180
\boldsymbol{T}	

Notes

(1) Type 1 kit provides conduit entry plate.
(2) Additional input and output reactors are available. Consult Eaton representative for a complete listing.

M-Max Series Adjustable Frequency AC Drives

Technical Data and Specifications

Ratings	
M-Max Basic Controller IP20 Standard Ratings	
Description	Specification
Protections	
Overcurrent protection	Trip limit $4.0 \times \mathrm{IH}_{\mathbf{H}}$ instantaneously
Overvoltage protection	115/230V series: 437 Vdc ; 400V series: 874 Vdc ; 575 V series: 1048 Vdc trip level
Undervoltage protection	115/230V series: 183 Vdc; 400V series: 333 Vdc; 575 V series: 460 Vdc trip level
Ground fault protection	Ground fault is tested before every start. In case of ground fault in motor or motor cable, only the frequency converter is protected
Overtemperature protection	Yes
Motor overload protection	
Motor stall protection	Yes
Motor underload protection Yes	
Programmable Parameters	
Description	
Application macros: basic, pump, fan and high load (hoist)	
Programmable start/stop and reverse signal logic (sinking or sourcing)	
Reference scaling	
Programmable start and stop functions	
DC-brake at start and stop	
Programmable V/Hz curve	
Adjustable switching frequency	
Autorestart function after fault	
Protections and supervisions (all fully programmable; off, warning, fault)	
Current signal input fault	
External fault	
Fieldbus communication	
Eight preset speeds	
Analog input range selection, signal scaling and filtering	
PID controller	
Skip frequencies	

Specifications

M-Max Series Drives	
Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	+10\%/-15\% (575V units: $+15 \% /-15 \%$)
Input frequency ($\mathrm{fin}^{\text {) }}$	50/60 Hz (variation up to 45-66 Hz)
Connection to power	Once per minute or less (typical operation)
Output Ratings	
Output voltage	0 to $V_{\text {in }}{ }^{(1)}$
Continuous output current	Continuous rated current I_{N} at ambient temperature max. $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, overload $1.5 \times \mathrm{I}_{\mathrm{N}}$ max. $1 \mathrm{~min} / 10 \mathrm{~min}$
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Initial output current (I_{H})	Current $2 \times{ }_{1}$ for 2 seconds in every 20 -second period Torque depends on motor

Control Characteristics

Control method	Frequency control (V/Hz) open loop or sensorless vector control
Switching frequency	1.5 to 16 kHz ; default 6 kHz
Frequency reference	Analog input: resolution 0.1% (10-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel reference: resolution 0.01 Hz
Field weakening point	30 to 320 Hz
Acceleration time	0 to 3000 sec
Deceleration time	0 to 3000 sec
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)

Brake Resistor (Minimum Values) ${ }^{(2)}$

230V Series	FS2 35 ohms and FS3 26 ohms
400V Series	FS2 75 ohms and FS3 54 ohms
$575 V$ Series	FS3 103 ohms

Ambient Conditions

Ambient operating temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(+50^{\circ} \mathrm{C}\right)$: Rated loadability I_{N}
Storage temperature	$-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$
Relative humidity	0 to 95\% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 721-3-3, unit in operation, Class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, Class 3S2
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft}(1000 \mathrm{~m})$; 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above $3280 \mathrm{ft}(1000 \mathrm{~m})$; max. $6560 \mathrm{ft}(2000 \mathrm{~m})$
Vibration	EN 60068-2-6; 3 to 150 Hz , displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , max. acceleration amplitude 1 G at 15.8 to 150 Hz
Shock	EN 50178, IEC 68-2-27 UPS Drop test (for applicable UPS weights); storage and shipping: max. 15G, 11 ms (in package)
Enclosure class	IP20

Notes

(1) Exception: 115 V single-phase in, 230 V three-phase out.
(2) Only three-phase FS2 and FS3 drives are equipped with brake chopper circuit.

M-Max Series Adjustable Frequency AC Drives

Standards

I/O Specifications

- Digital inputs DI1-DI6 are freely programmable. The user can assign multiple functions to a single input
- Digital, relay, and analog outputs are freely programmable

Includes:

- Six digital inputs
- Two analog inputs
- 4-20 mA
- 0-10V
- One analog output
- One digital output
- Two relay outputs
- RS-485 interface

Reliability

- Pretested components: standard
- Computerized testing: standard
- Final test with full load: standard
- Conformal-coated boards
- $50^{\circ} \mathrm{C}$ rated
- 150% for one minute/ 10 mm
- 200% for two seconds/ 20 sec .
- Eaton Electrical Services and Systems: national network of AF drive specialists

| | Signal | Fescription |
| :--- | :--- | :--- | :--- | :--- |

Note

P) Parameter-selectable function.

Dimensions

Approximate Dimensions in Inches (mm)

M-Max Drives

Frame Type	H1	H2	H3	W1	W2	W3	D1	D2	Weight Lbs (kg)
FS1	6.16	5.79	5.40	2.58	1.49	0.17	3.88	0.27	$1.213(0.550)$
	(156.5)	(147.0)	(137.3)	(65.5)	(37.8)	(4.5)	(98.5)	(7.0)	
FS2	7.68	7.20	6.69	3.54	2.46	0.22	4.00	0.27	$1.543(0.699)$
	(195.0)	(183.0)	(170.0)	(90.0)	(62.5)	(5.5)	(101.5)	(7.0)	
FS3	10.33	9.93	9.50	3.94	2.95	0.22	4.27	0.27	$2.183(0.990)$
	(262.5)	(252.3)	(241.3)	(100.0)	(75.0)	(5.5)	(108.5)	(7.0)	

NEMA 1/IP21 M-Max Drives and Communication Adapter Kit

Frame Type	H	W1	W2	W3	D
FS1	8.14	3.77	2.99	3.98	5.41
	(206.7)	(95.7)	(75.9)	(101.2)	(137.5)
FS2	9.90	4.72	3.97	4.94	5.68
	(251.5)	(120.0)	(100.8)	(125.5)	(144.2)
FS3	12.26	5.12	4.36	5.33	6.32
	(311.5)	(130.1)	(110.8)	(135.3)	(160.5)

SVX9000 Drives

Product Overview

With the SVX9000 Series Sensorless Vector Control, Eaton's expanded Eaton drive offering now covers a complete line of PWM adjustable frequency (speed) drives in ratings from:

- $208 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to 100 hp I
- $230 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 1 to $125 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- 480V-1 to $1900 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; $1-1 / 2$ to $2200 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- $575 \mathrm{~V}-2$ to $2000 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$; 3 to $2300 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
The Eaton family of drives includes HVX9000, H-Max, M-Max, SVX9000, SLX9000 and SPX9000. 9000X Series drive ratings are rated for either high overload $\left(I_{H}\right)$ or low overload (I_{L}). I_{L} indicates 110\% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes.

A full range of enclosure types and options are available to meet a wide array of applications-from simple variable torque to more complex industrial applications such as conveyors, mixers and machine controls.

Application Description

Application Engineering

Proper selection and application of all drive system components is essential to assure that an adjustable frequency drive system will safely and reliably provide the performance required for any given application. The party responsible for the overall design and operation of the facility must make sure that qualified personnel are employed to select all components of the drive system, including appropriate safety devices. Eaton's AF Drives Application Engineering Department is prepared to provide assistance to answer any questions about the technical capabilities of Eaton drives.

Motor Selection

The basic requirement of motor selection is to match the torque vs. speed capability of the motor to the torque vs. speed requirement of the driven load.

Contents

Description

Motor Torque vs. Speed Capability

As the speed of a motor is reduced below its 60 Hz base speed, motor cooling becomes less effective because of the reduced speed of the self-cooling fan. This limitation determines the maximum torque for continuous operation at any operating speed. The maximum intermittent operating torque is determined by the motor's torque vs. current characteristics and the output current capability of the adjustable frequency controller.

Multiple Motor Operation

A number of motors can be connected in parallel to a single controller. Since the frequency of the power supplied by the controller is the same for each motor, the motors will always operate at the same speed. Application Engineering assistance must be requested for all multiple motor applications to assure compliance with all controller design limitations.

Special Types of Motors

Standard NEMA Designs A and B three-phase motors are the only motors
recommended for use in the majority of applications, but other types of motors are occasionally used. If the existing motor used in the application or the motor proposed for use with the drive system is a type other than NEMA Design A or B, Application Engineering assistance must be requested to make certain that the drive is properly applied.

Product Selection Guide

Controller Selection

The basic requirement of controller selection is to match the output current, voltage and frequency capabilities of the controller with the requirements of the connected motor.

Output Current

The controller must be selected and applied such that the average operating motor current and horsepower do not exceed the continuous current and horsepower ratings of the controller. The intermittent operating current must not exceed the intermittent current rating of the controller.

Motor Protection

Eaton adjustable frequency drives include electronic motor overload protection circuits that are designed to meet the requirements of NEC article 430-2 provided that only one motor is connected to the output of the controller.

Output Voltage and Frequency

When they are shipped, AF controllers are adjusted to provide a maximum output voltage and frequency equivalent to the input line voltage and frequency. The controllers can be adjusted to operate above line frequency, but a hazard of personal injury or equipment damage may exist when the motor is operated above base speed. Before adjusting the drive to operate above line frequency, make sure that the motor and the driven machinery can safely be operated at the resulting speed.

Features

Controller Features Operator Control and Interface Requirements

Since there are many possible configurations and many ways of achieving a specific end result, it pays to consider the operator control and interface requirements carefully. A simplified and more economical drive package can often be achieved by selecting from standard product offerings rather than specifying a custom designed configuration.

Installation Compatibility

The successful application of an $A C$ drive requires the assurance that the drive will be compatible with the environment in which it will be installed. In planning the installation, be sure to carefully consider the heat produced by the drive, the altitude and temperature limits and the need for clean cooling air. Other important considerations include acoustical noise, vibration, electromagnetic compatibility, power quality, controller input harmonic current and power distribution equipment requirements.

Auxiliary Equipment and Accessories

Adjustable drives are generally designed to have a motor directly connected to the controller output terminals with no other equipment connected in series or parallel. Motor starters, disconnect switches, surge absorbers, DV/DT suppression circuits, output chokes, output transformers and any other equipment under consideration for installation on the output of the controller should not be installed without first requesting Application Engineering assistance. Power factor correction capacitors must never, under any circumstances, be connected at the output of the controller. They would serve no useful purpose, and they may damage the controller.

Enclosure Definitions

- NEMA Type 1/IP21-

Enclosures are intended for indoor use primarily to provide a degree of protection against contact with enclosed equipment and provide a degree of protection against a limited amount of falling dirt in locations where unusual service conditions do not exist. Top or side openings in the NEMA Type 1/IP21 enclosure allow for the free exchange of inside and outside air while meeting the UL rod entry and rust resistance design tests.

- NEMA Type 12/IP54-

Enclosures are intended for indoor use primarily to provide a degree of protection against circulating dust, falling dirt and dripping noncorrosive liquids. To meet UL drip, dust and rust resistance tests, NEMA Type 12/IP54 enclosures have no openings to allow for the exchange of inside and outside air.

- Chassis IPOO-Similar to Protected Chassis IP20 except power terminals are protected by plastic shielding only. Primarily intended to be mounted inside a surrounding protective enclosure.
- NEMA Type 3R-Similar in design to NEMA Type 12/ IP54 except with more stringent design and test requirements.

Motor Protection

DV/DT and Peak Motor Voltage Solutions

Today's AFD products offer significantly improved performance, but at the potential cost of motor insulation stress. The fast switching time of the IGBT devices used in newer AFDs can cause a transmission line effect in the output power leads to the motor, leading to possibly damaging voltage levels. To meet this need,

Product Availability Codes

The product availability codes indicate the type of facility (warehouse, Mod Center or factory) that the product will ship from and, if it is not in stock, the number of working days needed to assemble the

NEMA has introduced a motor in MG1, Part 31, which provides an insulation system designed to maintain normal motor life in AFD applications. For existing motors, a motor protection scheme is required for longer cable runs. Eaton offers three standard solutions for existing systems.
product from receipt of the order to shipment from the designated facility. Please note that this lead-time does not include any in-transit time from our facility to your facility.

- MotoRx This solution provides an energy recovery system which clamps the peak motor voltage to a safe level for standard motors. This option is used when the distance between a single motor and the drive is 600 ft or less.

Product Availability Codes

Code	Description
W	Warehouse stocked item. Shipped on customer request date. If item is backordered, please check Vista/VISTALINE or contact your Customer Support Center for product availability.
F1	Factory assemble-to-order. Shipped from factory within 1 working day after receipt of order on Vista.
FA	Factory assemble-to-order. Shipped from factory within 2-3 working days after receipt of order on Vista.
FB	Factory assemble-to-order. Shipped from factory within 4-10 working days after receipt of order on Vista.
FC	Factory assemble-to-order. Shipped from factory within 11-15 working days after receipt of order on Vista.
FD	Factory assemble-to-order. Shipped from factory within 16-20 working days after receipt of order on Vista.
FP	Factory assemble-to-order. Shipped from factory on negotiated promise date.
MA	Mod Center assemble-to-order. Shipped from Mod Center within 1-3 working days after receipt of order on Vista.
MB	Mod Center assemble-to-order. Shipped from Mod Center within 4-10 working days after receipt of order on Vista.
MP	Mod Center assemble-to-order. Shipped from Mod Center on negotiated promise date.

Product availability codes	For the most current
contained herein for a given	information, refer to the
product may be quantity	
sensitive and are subject to	
change without notice.	Product Identification Inquiry
(PIN) screen on Vista.	

- Output Line Reactor This option provides an output line reactor, reducing the DV/DT of the AFD output voltage and lessening the transmission line effect, to lower the peak voltage at the motor terminals.

SVX9000 Open Drives

Product Description

SVX9000 Series Adjustable Frequency Drives from Eaton's electrical sector are the next generation of drives specifically engineered for today's commercial and industrial applications. The power unit makes use of the most sophisticated semiconductor technology and a highly modular construction that can be flexibly adapted to the customer's needs.

The input and output configuration (I/O) is designed with modularity in mind. The I/O is compromised of option cards, each with its own input and output configuration. The control module is designed to accept a total of five of these cards. The cards contain not only normal analog and digital inputs but also fieldbus cards.

These drives continue the tradition of robust performance, and raise the bar on features and functionality, ensuring the best solution at the right price.

Features

- Robust design-proven 500,000 hours MTBF
- Integrated 3\% line reactors standard on drives from FR4 through FR9
- EMI/RFI Filters H standard up to $200 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}, 100$ hp $I_{H} 230 \mathrm{~V}$
- Simplified operating menu allows for typical programming changes, while programming mode provides control of everything
- Quick Start Wizard built into the programming of the drive ensures a smooth start-up
- Keypad can display up to three monitored parameters simultaneously
- LOCAL/REMOTE operation from keypad
- Copy/paste function allows transfer of parameter settings from one drive to the next
- Standard NEMA Type 12/ IP54 keypad on all drives

Contents

Description	Page
SVX9000 Open Drives	
Standards and Certifications	V6-T2-18
Catalog Number Selection	V6-T2-18
Product Selection	V6-T2-19
Accessories	V6-T2-23
Options	V6-T2-24
Replacement Parts	V6-T2-27
Technical Data and Specifications	V6-T2-34
Dimensions	V6-T2-35
SVX9000 Enclosed Drives	V6-T2-52
SVX9000 VFD Pump Panels	V6-T2-78

- The SVX can be flexibly adapted to a variety of needs using our preinstalled "Seven in One" precision application programs consisting of:
- Basic
- Standard
- Local/remote
- Multi step speed control
- PID control
- Multi-purpose control
- Pump and fan control with auto change
- Additional I/O and communication cards provide plug and play functionality
- I/O connections with simple quick connection terminals
- Hand-held auxiliary 24 V power supply allows programming/monitoring of control module without applying full power to the drive
- Control logic can be powered from an external auxiliary control panel, internal drive functions and fieldbus if necessary
- Brake chopper standard from: 1-30 hp/380-500V 3/4-15 hp/208-230V
- NEMA Type 1/IP21 and NEMA Type 12/IP54 enclosures available, Frame Sizes FR4-FR9
- Open chassis FR10 and greater
- Standard option board configuration includes an A9 I/O board and an A2 relay output board installed in slots A and B

Adjustable Frequency Drives
SVX9000 Drives

Standards and Certifications

Product

- IEC 61800-2

EMC (At Default Settings)

- Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H

Safety

- UL 508C
(U)

Catalog Number Selection

SVX9000 Adjustable Frequency Drives

Power Module

Notes

(1) All 230 V drives and 480 V drives up to $200 \mathrm{hp}(\mathrm{IH})$ are only available with input option 1 (EMC Level H). 480 V drives $250 \mathrm{hp}(\mathrm{IH}$) or larger are available with input option 2 (EMC Level N). 480 V drives are available with input option 4 (EMC Level L). 575 V drives 200 hp (IH) or larger are only available with input option 2.575 V drives up to $150 \mathrm{hp}(\mathrm{IH})$ are only available with input option $\mathbf{4}$ (EMC Level L).
(2) 480 V drives up to $30 \mathrm{hp}(\mathrm{IH})$ are only available with brake chopper option B. 480 V drives $40 \mathrm{hp}(\mathrm{IH})$ or larger come standard with brake chopper option $\mathbf{N} .230 \mathrm{~V}$ drives up to $15 \mathrm{hp}(\mathrm{IH})$ are only available with brake chopper option B. 230 V drives 20 hp or larger come standard with brake chopper option N. All 575 V drives come standard without brake chopper option (N). $\mathbf{N}=\mathbf{N o}$ brake chopper.
(3) 480 V drives $250 \mathrm{hp}\left(I_{H}\right)$ and larger are available with enclosure style $\mathbf{0}$ (chassis); 690 V drives $200 \mathrm{hp}\left(I_{H}\right)$ and larger are available with enclosure style $\mathbf{0}$ (chassis).
(4) Factory promise delivery. Consult sales office for availability.

Product Selection

230V SVX9000 Drives

SVX9000 Open Drives	208-240V, NEMA Type 1/IP21 Drives						
	Frame Size	Delivery Code	hp (l_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current (I_{L})	Catalog Number
	FR4	W	3/4	3.7	1	4.8	SVXF07A1-2A1B1
			1	4.8	1-1/2	6.6	SVX001A1-2A1B1
			1-1/2	6.6	2	7.8	SVXF15A1-2A1B1
			2	7.8	3	11	SVX002A1-2A1B1
			3	11	-	12.5	SVX003A1-2A1B1
	FR5	W	-	12.5	5	17.5	SVX004A1-2A1B1
			5	17.5	7-1/2	25	SVX005A1-2A1B1
			7-1/2	25	10	31	SVX007A1-2A1B1
	FR6	W	10	31	15	48	SVX010A1-2A1B1
			15	48	20	61	SVX015A1-2A1B1
	FR7	W	20	61	25	75	SVX020A1-2A1N1
			25	75	30	88	SVX025A1-2A1N1
			30	88	40	114	SVX030A1-2A1N1
	FR8	W	40	114	50	140	SVX040A1-2A1N1
			50	140	60	170	SVX050A1-2A1N1
			60	170	75	205	SVX060A1-2A1N1
	FR9	W	75	205	100	261	SVX075A1-2A1N1
			100	261	125	300	SVX100A1-2A1N1

208-240V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	hp (l_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current ($\mathrm{IL}_{\text {L }}$)	Catalog Number
FR4	F1	3/4	3.7	1	4.8	SVXF07A2-2A1B1
		1	4.8	1-1/2	6.6	SVX001A2-2A1B1
		1-1/2	6.6	2	7.8	SVXF15A2-2A1B1
		2	7.8	3	11	SVX002A2-2A1B1
		3	11	-	12.5	SVX003A2-2A1B1
FR5	F1	-	12.5	5	17.5	SVX004A2-2A1B1
		5	17.5	7-1/2	25	SVX005A2-2A1B1
		7-1/2	25	10	31	SVX007A2-2A1B1
FR6	F1	10	31	15	48	SVX010A2-2A1B1
		15	48	20	61	SVX015A2-2A1B1
FR7	W	20	61	25	75	SVX020A2-2A1N1
		25	75	30	88	SVX025A2-2A1N1
		30	88	40	114	SVX030A2-2A1N1
FR8	FP	40	114	50	140	SVX040A2-2A1N1
		50	140	60	170	SVX050A2-2A1N1
		60	170	75	205	SVX060A2-2A1N1
FR9	FP	75	205	100	261	SVX075A2-2A1N1
		100	261	125	300	SVX100A2-2A1N1

480V SVX9000 Drives

SVX9000 Open Drives	380-500V, NEMA Type 1/IP21 Drives						
	Frame Size	Delivery Code	hp (l_{H})	Current ($\mathrm{l}_{\mathbf{H}}$)	hp (L_{L})	Current ($\mathrm{L}_{\text {L }}$)	Catalog Number
	FR4	W	1	2.2	1-1/2	3.3	SVX001A1-4A1B1
			1-1/2	3.3	2	4.3	SVXF15A1-4A1B1
			2	4.3	3	5.6	SVX002A1-4A1B1
			3	5.6	5	7.6	SVX003A1-4A1B1
			5	7.6	-	9	SVX005A1-4A1B1
			-	9	7-1/2	12	SVX006A1-4A1B1
	FR5	W	7-1/2	12	10	16	SVX007A1-4A1B1
			10	16	15	23	SVX010A1-4A1B1
			15	23	20	31	SVX015A1-4A1B1
	FR6	W	20	31	25	38	SVX020A1-4A1B1
			25	38	30	46	SVX025A1-4A1B1
			30	46	40	61	SVX030A1-4A1B1
	FR7	W	40	61	50	72	SVX040A1-4A1N1
			50	72	60	87	SVX050A1-4A1N1
			60	87	75	105	SVX060A1-4A1N1
	FR8	W	75	105	100	140	SVX075A1-4A1N1
			100	140	125	170	SVX100A1-4A1N1
			125	170	150	205	SVX125A1-4A1N1
	FR9	W	150	205	200	261	SVX150A1-4A1N1
			200	245	250	300	SVX200A1-4A1N1

380-500V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	hp (I_{H})	Current (I_{H})	hp (L_{L})	Current (I_{L})	Catalog Number
FR4	F1	1	2.2	1-1/2	3.3	SVX001A2-4A1B1
		1-1/2	3.3	2	4.3	SVXF15A2-4A1B1
		2	4.3	3	5.6	SVX002A2-4A1B1
		3	5.6	5	7.6	SVX003A2-4A1B1
		5	7.6	-	9	SVX005A2-4A1B1
		-	9	7-1/2	12	SVX006A2-4A1B1
FR5	F1	7-1/2	12	10	16	SVX007A2-4A1B1
		10	16	15	23	SVX010A2-4A1B1
		15	23	20	31	SVX015A2-4A1B1
FR6	F1	20	31	25	38	SVX020A2-4A1B1
		25	38	30	46	SVX025A2-4A1B1
		30	46	40	61	SVX030A2-4A1B1
FR7	W	40	61	50	72	SVX040A2-4A1N1
		50	72	60	87	SVX050A2-4A1N1
		60	87	75	105	SVX060A2-4A1N1
FR8	W	75	105	100	140	SVX075A2-4A1N1
		100	140	125	170	SVX100A2-4A1N1
		125	170	150	205	SVX125A2-4A1N1
FR9	W	150	205	200	261	SVX150A2-4A1N1
		200	245	250	300	SVX200A2-4A1N1

SVX9000 Open Drives	Frame Size		Chassi hp (l_{H})	Drives Current (l_{H})	hp (L_{L})	Current (I_{L})	Catalog Number
	FR10 ${ }^{1}$	W	250	330	300	385	SPX250A0-4A2N1
PO- 0			300	385	350	460	SPX300A0-4A2N1
			350	460	400	520	SPX350A0-4A2N1
	FR11	W	400	520	500	590	SPX400A0-4A2N1
			500	590	-	650	SPX500A0-4A2N1
			-	650	600	730	SPX550A0-4A2N1
	FR12	FP	600	730	-	820	SPX600A0-4A2N1
		W	-	820	700	920	SPX650A0-4A2N1
		FP	700	920	800	1030	SPX700A0-4A2N1
	FR13	FP	800	1030	900	1150	SPX800A0-4A2N1
			900	1150	1000	1300	SPX900A0-4A2N1
			1000	1300	1200	1450	SPXH10A0-4A2N1
	FR14	FP	1200	1600	1500	1770	SPXH12AO-4A2N1
			1600	1940	1800	2150	SPXH16A0-4A2N1
			1900	2300	2200	2700	SPXH19A0-4A2N1

575V SVX9000 Drives

525-690V, NEMA Type 1/IP21 Drives

Frame Size	Delivery Code	hp (I_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (I_{L})	Current (I_{L})	Catalog Number
FR6	W	2	3.3	3	4.5	SVX002A1-5A4N1
		3	4.5	-	5.5	SVX003A1-5A4N1
		-	5.5	5	7.5	SVX004A1-5A4N1
		5	7.5	7-1/2	10	SVX005A1-5A4N1
		7-1/2	10	10	13.5	SVX007A1-5A4N1
		10	13.5	15	18	SVX010A1-5A4N1
		15	18	20	22	SVX015A1-5A4N1
		20	22	25	27	SVX020A1-5A4N1
		25	27	30	34	SVX025A1-5A4N1
FR7	W	30	34	40	41	SVX030A1-5A4N1
		40	41	50	52	SVX040A1-5A4N1
FR8	W	50	52	60	62	SVX050A1-5A4N1
		60	62	75	80	SVX060A1-5A4N1
		75	80	100	100	SVX075A1-5A4N1
FR9	W	100	100	125	125	SVX100A1-5A4N1
		125	125	150	144	SVX125A1-5A4N1
		150	144	-	170	SVX150A1-5A4N1
		-	170	200	208	SVX175A1-5A4N1

Note
(1) FR10-FR14 includes 3\% line reactor, but it is not integral to chassis.

525-690V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	hp (H_{H})	Current (I_{H})	hp (IL_{L})	Current (I_{L})	Catalog Number
FR6	F1	2	3.3	3	4.5	SVX002A2-5A4N1
		3	4.5	-	5.5	SVX003A2-5A4N1
		-	5.5	5	7.5	SVX004A2-5A4N1
		5	7.5	7-1/2	10	SVX005A2-5A4N1
		7-1/2	10	10	13.5	SVX007A2-5A4N1
		10	13.5	15	18	SVX010A2-5A4N1
		15	18	20	22	SVX015A2-5A4N1
		20	22	25	27	SVX020A2-5A4N1
		25	27	30	34	SVX025A2-5A4N1
FR7	FP	30	34	40	41	SVX030A2-5A4N1
		40	41	50	52	SVX040A2-5A4N1
FR8	FP	50	52	60	62	SVX050A2-5A4N1
		60	62	75	80	SVX060A2-5A4N1
		75	80	100	100	SVX075A2-5A4N1
FR9	FP	100	100	125	125	SVX100A2-5A4N1
		125	125	150	144	SVX125A2-5A4N1
		150	144	-	170	SVX150A2-5A4N1
		-	170	200	208	SVX175A2-5A4N1

525-690V, Open Chassis Drives

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (I_{L})	Current ($\mathrm{IL}_{\text {L }}$)	Catalog Number
FR10	FP	200	208	250	261	SPX200A0-5A2N1
		250	261	300	325	SPX250A0-5A2N1
		300	325	400	385	SPX300A0-5A2N1
FR11	FP	400	385	450	460	SPX400A0-5A2N1
		450	460	500	502	SPX450A0-5A2N1
		500	502	-	590	SPX500A0-5A2N1
FR12	FP	-	590	600	650	SPX550A0-5A2N1
		600	650	700	750	SPX600A0-5A2N1
		700	750	800	820	SPX700A0-5A2N1
FR13	FP	800	820	900	920	SPX800A0-5A2N1
		900	920	1000	1030	SPX900A0-5A2N1
		1000	1030	1250	1180	SPXH10A0-5A2N1
FR14	FP	1350	1300	1500	1500	SPXH13A0-5A2N1
		1500	1500	2000	1900	SPXH15A0-5A2N1
		2000	1900	2300	2250	SPXH20A0-5A2N1

Accessories

Demo Drive and Power Supply

Demo Drive and Power Supply

Description	Catalog Number
$9000 X$ demo drive	9000XDEMO
Hand-held 24V auxiliary power supply—Used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	$\mathbf{9 0 0 0 X A U X 2 4 V}$

NEMA Type 12/IP54 Conversion Kit

The NEMA Type 12/IP54 kit option is used to convert a NEMA Type 1/IP21 to a NEMA Type 12/IP54 drive. The NEMA Type 12/IP54
kit consists of a metal drive shroud, fan kit for some frames, adaptor plate and plugs.

NEMA Type 12/IP54 Conversion Kit

Frame Size	Delivery Code	Approximate Dimensions in Inches (mm)			Approximate Weight $\mathbf{L b}(\mathbf{k g})$	Catalog Number
		Length	Width	Height		
FR4	W	13 (330)	7 (178)	4 (102)	4 (1.8)	OPTN12FR4
FR5		16 (406)	8 (203)	7 (178)	$5(2.3)$	OPTN12FR5
FR6		21 (533)	10 (254)	5 (127)	7 (3.2)	OPTN12FR6

Flange Kits

Flange Kit NEMA Type 12/ IP54

The flange kit is utilized when the power section is mounted through the back panel of an enclosure. Includes flange mount brackets and NEMA Type 12/IP54 fan components. Metal shroud not included.

Flange kits for NEMA Type 12/IP54 enclosure drive rating are determined by rating of drive.		
Flange Kit NEMA Type 12/ IP54-Frames 4, 5 and 6 (1)		
Frame Size	Delivery Code	Catalog Number
FR4	W	OPTTHRFR4
FR5		OPTTHRFR5
FR6		OPTTHRFR6

Flange Kit NEMA Type 12/ IP54-Frames 4-9 (1)		
Frame Size	Delivery Code	Catalog Number
FR4	FP	OPTTHR4
FR5		OPTTHR5
FR6		OPTTHR6
FR7		OPTTHR7
FR8		OPTTHR8
FR9		OPTTHR9

Flange Kit NEMA Type

 1/IP21Flange kits for NEMA Type 1/IP21 enclosure drive rating are determined by rating of drive

Frame Size	Delivery Code	Catalog Number
FR4	FP	OPTTHR4
FR5		OPTTHR5
FR6		OPTTHR6
FR7		OPTTHR7
FR8		OPTTHR8
FR9		OPTTHR9

Note
(1) For installation of an SVX9000 NEMA Type 1/IP21 drive into a NEMA Type 12/IP54 oversized enclosure.

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.
The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{(2)}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	■	-	\square	■	■	-	-
6 DI, 1 DO, 2 AI, 1AO, 1 +10 Vdc ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	-	-	-	-	-	-	-
Extended I/O Cards										
2 RO , therm-SPX only	B	OPTA3	A3	-	\square	\square	\square	\square	\square	-
Encoder low volt +5V/15V/24V—SPX only	C	OPTA4	A4	-	\square	\square	-	-	\square	-
Encoder high volt $+15 \mathrm{~V} / 24 \mathrm{~V}$-SPX only	C	OPTA5	A5	-	\square	\square	\square	-	\square	-
Double encoder-SPX only	C	OPTA7	A7	-	\square	\square	-	-	\square	-
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$-SPX only	A	OPTA8	A8	-	\square	\square	-	-	\square	-
3 DI (encoder 10-24V), out $+15 \mathrm{~V} /+24 \mathrm{~V}$, 2 DO (pulse+direction)—SPX only	C	OPTAE	AE	-	\square	\square	-	\square	\square	-
$6 \mathrm{DI}, 1 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB1	B1	-	-	-	-	-	■	-
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	-
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	-	■	■	-	-	■	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	\square	-
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	-
Communication Cards										
Modbus (3)	D, E	OPTC2	C2	-	\square	\square	-	-	\square	\square
Johnson Controls N2 ${ }^{(3)}$	D, E	OPTC2	CA	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	CI	-	\square	\square	-	-	\square	\square
BACnet	D, E	OPTCJ	CJ	-	\square	\square	\square	\square	\square	\square
Ethernet IP	D, E	OPTCK	CK	\square	\square	\square	\square	\square	\square	-
Profibus DP	D, E	OPTC3	C3	\square	\square	\square	\square	\square	\square	-
LonWorks	D, E	OPTC4	C4	-	\square	\square	-	-	\square	\square
Profibus DP (D9 connector)	D, E	OPTC5	C5	-	\square	\square	-	-	\square	\square
CanOpen (slave) ${ }^{(4)}$	D, E	OPTC6	C6	\square	\square	\square	-	-	\square	-
DeviceNet	D, E	OPTC7	C7	-	\square	\square	\square	-	\square	\square
Modbus (D9 type connector)	D, E	OPTC8	C8	-	\square	\square	-	■	\square	-
Adapter-SPX only	D, E	OPTD1	D1	\square	\square	\square	\square	\square	\square	-
Adapter-SPX only	D, E	OPTD2	D2	\square	\square	\square	\square	-	\square	-
RS-232 with D9 connection	D, E	OPTD3	D3	\square	\square	\square	-	-	\square	-
Keypad										
9000X Series local/remote keypad (replacement keypad)	-	KEYPADLOC/REM	-	-	-	-	-	-	-	-
9000X Series remote mount keypad unit (keypad not included, includes 10 ft cable, keypad holder, mounting hardware)	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-
$9000 \times$ Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.
(4) SPX9000 drives only (FR10 and larger).

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the $9000 \times$ Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9 -pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CanOpen (Slave) Communications

The CanOpen (Slave)
Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120$ ohms line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250K baud and 500 K baud.

Johnson Controls Metasys N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ-45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Control Panel Options

Factory Options

Keypad Remote Mounting Kit—This option is used to remote mount the SVX9000 keypad. The OPTRMT-KIT-9000X
footprint is compatible to the SV9000 remote mount kit. Includes 10 ft cable, keypad holder and mounting hardware.

Miscellaneous Options

| Description | Catalog Number |
| :--- | :--- | :--- |
| 9000XDrive-A PC-based tool for controlling and monitoring of the SVX9000. Features include: loading parameters that | 9000XDRIVE |
| can be saved to a file or printed, setting references, starting and stopping the motor, monitoring signals in graphical or text | |
| form, and real-time display. To avoid damage to the drive or computer, SVDrivecable must be used. | |

SVDrivecable-6 ft (1.8m) RS-232 cable (22 gauge) with a 7 -pin connector on each end. Should be used in conjunction SVDRIVECABLE with the 9000XDrive option to avoid damage to the SVX9000 or computer. The same cable can be used for downloading specialized applications to the drive.
External Dynamic Braking Resistors-Used with the dynamic braking chopper circuit to absorb motor regenerative
energy for stopping the load and to dissipate the energy flowing back into the drive. Resistors are separated into standard duty and heavy-duty. Standard duty is defined as 20\% duty or less with 100\% braking torque, while heavy-duty is defined as 50% duty or less with 150% braking torque.

Open Drive Options

Brake Chopper Options

The brake chopper circuit option is used for applications that require dynamic braking. Dynamic braking resistors are not included with drive
purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors are not UL Listed.

Conformal Coated

 Board Kits ${ }^{(3)}$| Field Installed
 Catalog Number | Factory Installed
 Option Designator |
| :--- | :--- |
| OPT_V ${ }^{4}$ | (5) |

For brake chopper circuit selection and adder-NEMA Type 1/IP21, NEMA Type 12/ IP54, Chassis, consult the factory. Delivery code is FP.

Conformal (Varnished) Coating ${ }^{2}$	
Chassis Frame	Delivery Code
FR4	FP
FR5	FP
FR6	FP
FR7	FP
FR8	FP
FR9	FP
FR10	FP
FR11	FP
FR12	FP
FR13	FP
FR14	FP

Notes

(1) Consult factory.
(2) See Product Selection on Pages V6-T2-19 to V6-T2-22, 208-240V, 380-500V, 525-690V. Consult the factory for adder.
(3) See option catalog numbers on Page V6-T2-24
(4) Replace "__" with the correct catalog number from Page V6-T2-24. Example: OPTC2V.
(5) Construct catalog numbers for factory installed per Catalog Number Selection on Page V6-T2-18

Replacement Parts

SVX9000 Drives Spare Units

208-690V, Frames 4-12

Description	Catalog Number
Control unit-Includes the control board, blue base housing, installed SVX9000 software program and blue flip cover.	CSBSO000000000
Does not include any OPT boards or keypad. See Page V6-T2-24 for standard and option boards and keypad.	

SVX9000 Drives Replacement Parts

208-240V, Frames FR4-FR8

Frame hp (I_{H}):	4 $3 / 4$	1	1-1/2	2	3	5 $5{ }^{\text {(1) }}$	5	7-1/2	6 10	15	7 20	25	30	8 40	50	60	Delivery Code	Catalog Number
	Control Board																	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	W	VB00252
	Power Boards																	
	1																FB	VB00308-0004-2
		1															FB	VB00308-0007-2
			1														FB	VB00308-0008-2
				1													FB	VB00310-0011-2
					1												FB	VB00310-0012-2
						1											FB	VB00313-0017-2
							1										FB	VB00313-0025-2
								1									FB	VB00313-0031-2
									1								FB	VB00316-0048-2
										1							FB	VB00316-0061-2
											1						FB	VB00319-0075-2
												1					FB	VB00319-0088-2
													1				FB	VB00319-0114-2
														1			FB	VB00322-0140-2
															1		FB	VB00322-0170-2
																1	FB	VB00322-0205-2
	Electrolytic Capacitors																	
	2	2	2														W	PP01000
				2	2												W	PP01001
						2	2										W	PP01002
								2									W	PP01003
									2	2							W	PP01004
											2	2	2	4	4		W	PP01005
																4	W	PP01099
	Cooling Fans																	
	1	1	1	1	1												W	PP01060
						1	1	1									W	PP01061
									1	1							W	PP01062
											1	1	1				W	PP01063
														1	1	1	FC	PP01123 ${ }^{\text {2 }}$
	1	1	1	1	1												W	PP01086
						1	1	1	1	1							FC	PP01088
											1	1	1				W	PP01049
														1	2	2	FC	CP01180
														1	1	1	FC	PP08037

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) PP00061 capacitor not included in main fan; please order separately

208-240V, Frames FR4-FR8, continued

Frame hp (I_{H}):	4 $3 / 4$	1	1-1/2	2	3	5 5 (1)	5	7-1/2	6 10	15	7 20	25	30	8 40	50	60	Delivery Code	Catalog Number
	IGBT Modules																	
	1	1															W	CP01304
			1														W	CP01305
				1	1	1											W	CP01306
							1										W	CP01307
								1									W	CP01308
									1								W	PP01022
										1							W	PP01023
											1						W	PP01024
												1					W	PP01025
													1				W	PP01029
														1			W	PP01026
															1	1	W	PP01027
	Cho	/	fiers															
									1								W	CP01367
										1							W	CP01368
	Diod	y	Mod															
											3	3	3				W	PP01035
														3	3	3	W	CP01268
	Rect	ng	rds															
											1	1	1				W	VB00242
														1	1	1	W	VB00227

380-500V, Frames FR4-FR9

Note

(1) I_{L} only; has no corresponding I_{H} rated $h p$ rating.

380-500V, Frames FR4-FR9, continued

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.

2 PP00061 capacitor not included in main fan; please order separately
${ }^{3}$ PPO0011 capacitor not included in main fan; please order separately.
(4) For FR9 NEMA Type 12/IP54 you need two PP01068 internal fans.

Adjustable Frequency Drives

SVX9000 Drives

380-500V, Frames FR4-FR9, continued

Frame hp (I_{H}):	$\begin{array}{lr} 4 & \\ 1 & 1-1 / 2 \end{array}$	23	35	5 7-1/2 (1)	$\begin{aligned} & 5 \\ & 7-1 / 2 \end{aligned}$	10	15	6 20	25	30	7 40	50	60	8 75	100	125	9 150	200	Delivery Code	Catalog Number
	Rectifying Boards																			
											1	1	1						W	VB00242
														1	1	1			W	VB00227
																	1	1	W	VB00459
	Rectifying Module Sub-Assembly																			
																	1	1	W	FR09810
	Power Module Sub-Assemblies																			
																	1		W	FR09-150-4-ANS ${ }^{(2)}$
																		1	W	FR09-200-4-ANS ${ }^{2}$

380-500V, Frames FR10-FR12

Frame hp (I_{H}):	10 250	300	350	11 400	500	550	12 600	650	700	Delivery Code	Catalog Number
	Control Board										
	1	1	1	1	1	1	1	1	1	W	VB00561 ${ }^{(3)}$
	Shunt Boards										
	6									FC	VB00537
		6								FC	VB00497
			6				12	12	12	FC	VB00498
				9						FC	VB00538
					9					FC	VB00513
						9				FC	VB00514
	Driver Boards										
				3	3	3				FC	VB00489
	1	1	1				2	2	2	FC	VB00487
	Driver Adapter Board										
	1	1	1				2	2	2	FC	VB00330
	ASIC Board										
	1	1	1	1	1	1	2	2	2	FC	VB00451
	Feedback Interface Board										
							2	2	2	FC	VB00448
	Star Coupler Board										
							1	1	1	FC	VB00336
	Power Modules										
	1	1	1	2	2	2	2	2	2	FC	FR10820 ${ }^{4}$
	2	2	2							FC	FR10828
	1									FC	FR10-250-4-ANS ${ }^{2}{ }^{2}$
		1								FC	FR10-300-4-ANS ${ }^{2}{ }^{2}$
		1					2	2	2	FC	FR10-350-4-ANS ${ }^{2}{ }^{2}$
				3						FC	FR11-400-4-ANS ${ }^{2}$ (
				3						FC	FR11-500-4-ANS ${ }^{2}{ }^{2}$
						3				FC	FR11-550-4-ANS ${ }^{(2)}$

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
${ }^{(2)}$ See Page V6-T2-18 for details.
(3) SPX9000 drives only (FR10 and larger).
(4) Rectifying board not included.

380-500V, Frames FR10-FR12, continued

Frame hp (I_{H}):	10 250	300	350	11 400	500	550	12 600	650	700	Delivery Code	Catalog Number
	Electrolytic Capacitors										
	2	2	2	3	3	3	4	4	4	FC	PP00060
	12	12	12	18	18	18	24	24	24	FC	PP01005
	Fuses										
	1	1	1	1	1	1	2	2	2	FC	PP01094
	2	2	2	2	2	2	4	4	4	FC	PP01095
	Cooling Fans and Isolation Transformers										
	2	2	2	3	3	3	4	4	4	FC	VB00299
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{(1)}$
	2	2	2				4	4	4	FC	PP01068
	1	1	1	1	1	1	2	2	2	FC	PP01096
	1	1	1				2	2	2	FC	FR10844
	1	1	1	3	3	3	2	2	2	FC	FR10845
	1	1	1				2	2	2	FC	FR10846
	1	1	1	3	3	3	2	2	2	FC	FR10847
	Rectifying Board										
	1	1	1	2	2	2	2	2	2	FC	VB00459

525-690V, Frames FR6-FR9

Frame hp (I_{H}):	6 2	35	$5^{(2)}$	5	7-1/2	10	15	20	25	7 30	40	8 50	60	75	9 100	125	150	$200{ }^{(2)}$	Delivery Code	Catalog Number
	Control Board																			
	1	1	1	1	1	1	1	1	1	1	1					1	1	1	W	VB00252
	Driver Boards																			
	1																		FB	VB00404-0004-6
		1																	FB	VB00404-0005-6
			1																FB	VB00404-0007-6
				1															FB	VB00404-0010-6
					1														FB	VB00404-0013-6
						1													FB	VB00404-0018-6
							1												FB	VB00404-0022-6
								1											FB	VB00404-0027-6
									1										FB	VB00404-0034-6
	Power Boards																			
										1									FB	VB00419-0041-6
											1								FB	VB00419-0052-6
												1							FB	VB00422-0062-6
													1						FB	VB00422-0080-6
														1					FB	VB00422-0100-6
	Power Modules																			
															1				FC	FR09-100-5-ANS ${ }^{3}$
																1			FC	FR09-125-5-ANS ${ }^{(3)}$
																	1		FC	FR09-150-5-ANS ${ }^{(3)}$
																		1	FC	FR09-175-5-ANS ${ }^{(3)}$

Notes

(1) PP00060 capacitor not included in main fan; please order separately
(2) I only; has no corresponding I_{H} rated hp rating.
(3) See Page V6-T2-18 for details.

525-690V, Frames FR6-FR9, continued

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) For NEMA Type 12/IP54, two PP01068 internal fans are needed.

525-690V, Frames FR10-FR12

Frame hp (I_{H}):	10 200	250	300	11 400	450	500	12 550	600	700	Delivery Code	Catalog Number
	Component Boards										
	1	1	1	1	1	1	1	1	1	W	VB00561 ${ }^{(1)}$
	1	1	1	1	1	1	2	2	2	FC	VB00451
	6									FC	VB00545
		6								FC	VB00510
			6				12	12	12	FC	VB00511
	1	1	1				2	2	2	FC	VB00330
	1	1	1				2	2	2	FC	VB00487
				3	3	3				FC	VB00489
				9						FC	VB00546
					9					FC	VB00547
						9				FC	VB00512
							2	2	2	FC	VB00448
							1	1	1	FC	VB00336
	Power Modules										
	1	1	1	2	2	2	2	2	2	FC	FR10821 ${ }^{(2)}$
	2	2	2							FC	FR10829
	1									FC	FR10-200-5-ANS ${ }^{(3)}$
		1								FC	FR10-250-5-ANS ${ }^{(3)}$
			1				2	2	2	FC	FR10-300-5-ANS ${ }^{(3)}$
				3						FC	FR11-400-5-ANS ${ }^{(3)}$
					3					FC	FR11-450-5-ANS ${ }^{(3)}$
						3				FC	FR11-500-5-ANS ${ }^{(3)}$
	Electrolytic Capacitors										
	2	2	2	3	3	3	4	4	4	FC	PP00060
	12	12	12	18	18	18	24	24	24	FC	PP01099
	Fuses										
	1	1	1	1	1	1	2	2	2	FC	PP01094
	2	2	2	2	2	2	4	4	4	FC	PP01095
	Cooling Fans and Isolation Transformers										
	2	2	2	3	3	3	4	4	4	FC	VB00299
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{4}$
	2	2	2				4	4	4	FC	PP01068
	1	1	1	1	1	1	2	2	2	FC	PP01096
	1	1	1				2	2	2	FC	FR10844
	1	1	1	3	3	3	2	2	2	FC	FR10845
	1	1	1				2	2	2	FC	FR10846
	1	1	1	3	3	3	2	2	2	FC	FR10847
	Fan Power Supply										
							1	1	1	FC	VB00299
	Rectifying Boards										
	1	1	1	2	2	2	2	2	2	FC	VB00460

Notes

(1) SPX9000 drives only (FR10 and larger).
(2) Rectifying board not included.
(3) See Page V6-T2-18 for details.
(4) PP00060 capacitor not included in main fan; please order separately.

Adjustable Frequency Drives

SVX9000 Drives

Technical Data and Specifications

SVX9000 Drives

Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	+10\%/-15\%
Input frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to 45-66 Hz)
Connection to power	Once per minute or less (typical operation)
High withstand rating	100 kAIC
Output Ratings	
Output voltage	0 to $\mathrm{V}_{\text {in }}$
Continuous output current	I_{H} rated 100% at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, $\mathrm{FR9}$ and below I_{L} rated 100% at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, $\mathrm{FR9}$ and below $\mathrm{I}_{\mathrm{H}} / \mathrm{I}_{\mathrm{L}} 100 \%$ at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, FR10 and above
Overload current ($\left.\mathrm{I}_{\mathrm{H}} / \mathrm{L}_{\mathrm{L}}\right)$	$150 \% \mathrm{I}_{\mathrm{H}}, 110 \% \mathrm{I}_{\mathrm{L}}$ for 1 min .
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Initial output current (I_{H})	250\% for 2 seconds
Control Characteristics	
Control method	Frequency control (V/f) Open loop: Sensorless vector control Closed loop: SPX9000 drives only
Switching frequency Frame 4-6 Frame 7-12	Adjustable with parameter 2.6.9 $1-16 \mathrm{kHz}$; default 10 kHz $1-10 \mathrm{kHz}$; default 3.6 kHz
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel reference: Resolution 0.01 Hz
Field weakening point	$30-320 \mathrm{~Hz}$
Acceleration time	0-3000 sec.
Deceleration time	0-3000 sec.
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient operating temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{H}}$ (FR4-FR9) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{H}}(\mathrm{FR} 10$ and up) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right) \mathrm{I}_{\mathrm{L}}$ (all frames)
Storage temperature	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative humidity	0 to 95% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft}(1000 \mathrm{~m})$; 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above $3280 \mathrm{ft}(1000 \mathrm{~m})$; max. $9842 \mathrm{ft}(3000 \mathrm{~m})$
Vibration	EN 50178, EN 60068-2-6; 5 to 50 Hz , displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , max. acceleration amplitude 1 G at 15.8 to 150 Hz
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure class	NEMA 1/IP21 or NEMA 12/IP54, open chassis/IP20

Description	Specification
Control Connections	
Analog input voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200$ kohms (-10 to 10 V joystick control) resolution 0.1%; accuracy $\pm 1 \%$
Analog input current	$0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{i}}-250$ ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	$+24 \mathrm{~V} \pm 15 \%$, max. 250 mA
Output reference voltage	$+10 \mathrm{~V}+3 \%$, max. load 10 mA
Analog output	O(4) to 20 mA ; R R_{L} max. 500 ohms; resolution 10 bit; accuracy $\pm 2 \%$
Digital outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay outputs	Two programmable Form C relay outputs switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}, 125 \mathrm{Vdc} / 0.4 \mathrm{~A}$
Protections	
Overcurrent protection	Trip limit $4.0 \times \mathrm{l}$ H instantaneously
Overvoltage protection	Yes
Undervoltage protection	Yes
Earth fault protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input phase supervision	Trips if any of the input phases are missing
Motor phase supervision	Trips if any of the output phases are missing
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes (+24 V and +10 V reference voltages)

Standard I/O Specifications

Description	Specification
Six-digital input programmable	24V: " 0 " $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}}>5$ kohms
Two-analog input configurable w/jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200 \mathrm{kohms}$ Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohms
Two-digital output programmable	Form C relays 250 Vac 30 Vdc 2 amp resistive
One-analog output programmable configurable w/jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500 ohms 10 bits $\pm 2 \%$
One digital output programmable	Open collector 48 Vdc 50 mA

Dimensions

Approximate Dimensions in Inches (mm)

9000X Open Drives

NEMA Type 1/IP21 and NEMA Type 12/IP54, FR4, FR5 and FR6

Voltage	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	H1	H2	H3	D1	D2	D3	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs (kg)	Knockouts at Inches (mm) N1 (0.D.)
FR4													
230 V	3/4-3	$\begin{gathered} 12.9 \\ -(327) \end{gathered}$	$\begin{aligned} & 12.3 \\ & (313) \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & (292) \end{aligned}$	$\begin{aligned} & 7.5 \\ & (190) \end{aligned}$	$\begin{aligned} & 3.0 \\ & (77) \end{aligned}$	$\begin{aligned} & \hline 4.9 \\ & (126) \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (128) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	0.5 (13)	0.3 (7)	11.0 (5)	3 @ 1.1 (28)
480V	1-5												
FR5													
230 V	5-7-1/2	$\begin{aligned} & 16.5 \\ & (419) \end{aligned}$	$\begin{aligned} & 16.0 \\ & (406) \end{aligned}$	$\begin{aligned} & 15.3 \\ & (389) \end{aligned}$	$\begin{aligned} & 8.4 \\ & (214) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & 5.6 \\ & (143) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	0.5 (13)	0.3 (7)	17.9 (8)	$\begin{aligned} & 2 @ 1.5(37) \\ & 1 @ 1.1 \text { (28) } \end{aligned}$
480V	7-1/2-15												
FR6													
230 V	10-15	$\begin{aligned} & 22.0 \\ & \text { (558) } \end{aligned}$	$\begin{aligned} & \hline 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 20.4 \\ & \text { (519) } \end{aligned}$	$\begin{aligned} & \hline 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & (105) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{aligned} & \hline 7.6 \\ & (195) \end{aligned}$	$\begin{aligned} & 5.8 \\ & (148) \end{aligned}$	0.6 (15.5)	0.4 (9)	40.8 (19)	3 @ 1.5 (37)
480 V	20-30												
575 V	2-25												

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54 with Flange Kit, FR4, FR5 and FR6

FR4, FR5 and FR6 with Flange Kit

W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A
FR4									
$5.0(128)$	$4.5(113)$	$13.3(337)$	$12.8(325)$	$12.9(327)$	$1.2(30)$	$0.9(22)$	$7.5(190)$	$3.0(77)$	$0.3(7)$

FR5									
$5.6(143)$	$4.7(120)$	$17.0(434)$	$16.5(420)$	$16.5(419)$	$1.4(36)$	$0.7(18)$	$8.4(214)$	$3.9(100)$	$0.3(7)$

FR6									
$7.7(195)$	$6.7(170)$	$22.0(560)$	$21.6(549)$	$22.0(558)$	$1.2(30)$	$0.8(20)$	$9.3(237)$	$4.2(106)$	$0.3(7)$

Flange Opening, FR4 to FR6

W3	W4	W5	H6	H7	H8	H9	Dia. B
FR4							
$4.8(123)$	$4.5(113)$	-	$12.4(315)$	$12.8(325)$	-	$0.2(5)$	$0.3(7)$
FR5							
$5.3(135)$	$4.7(120)$	-	$16.2(410)$	$16.5(420)$	-	$0.2(5)$	$0.3(7)$
FR6							
$7.3(185)$	$6.7(170)$	$6.2(157)$	$21.2(539)$	$21.6(549)$	$0.3(7)$	$0.2(5)$	$0.3(7)$

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR7

2.3

Adjustable Frequency Drives
SVX9000 Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR8

Voltage	hp ($\left.\mathbf{I}_{\mathbf{H}}\right)$	D1	H1	H2	H3	W1	W2	R1 Dia.	R2 Dia.
230 V	$40-60$	$13.5(344)$	$30.1(764)$	$28.8(732)$	$28.4(721)$	$11.5(291)$	$10(255)$	$0.7(18)$	$0.4(9)$
480 V	$75-125$								
575 V	$50-75$								

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, with Flange Kit, FR7 and FR8

| W1 | W2 | W3 | W4 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | D1 | D2 | Dia. A | |
| :--- |
| FR7 | | | | | | | | | | | | | | |
| $9.3(237)$ | $6.8(175)$ | $10.6(270)$ | $10.0(253)$ | $24.9(652)$ | $24.8(632)$ | $24.8(630)$ | $7.4(189)$ | $7.4(189)$ | $0.9(23)$ | $0.8(20)$ | $10.1(257)$ | $4.6(117)$ | $0.3(6)$ | |
| FR8 | | | | | | | | | | | | | | |
| $11.2(285)$ | - | $14.0(355)$ | $13.0(330)$ | $32.8(832)$ | - | $29.3(745)$ | $10.2(258)$ | $10.4(265)$ | $1.7(43)$ | $2.2(57)$ | $13.5(344)$ | $4.3(110)$ | $0.4(9)$ | |

Flange Opening, FR7 and FR8

W5	W6	W7	H8	H9	H10	H11	H12	H13	Dia. B
FR7									
$9.2(233)$	$6.9(175)$	$10.0(253)$	$24.4(619)$	$7.4(189)$	$7.4(189)$	$1.4(35)$	$1.3(32)$	$1.0(25)$	$0.3(6)$
FR8									
$11.9(301)$	-	$13.0(330)$	$31.9(810)$	$10.2(258)$	$10.4(265)$	-	-	$1.3(33)$	$0.4(9)$

2.3

Adjustable Frequency Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9

Voltage	hp (l_{H})	H1	H2	H3	D1	D2	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs (kg)
230 V	75-100	45.3 (1150)	44.1 (1120)	42.4 (1076)	13.4 (340)	14.3 (362)	18.9 (480)	15.7 (400)	0.8 (20)	0.4 (9)	321.9 (146)
480 V	150-200										
575 V	100-175										

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54 FR9, continued

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6 (1)	D1	D2	D3
$18.9(480)$	$15.7(400)$	$6.5(165)$	$0.4(9)$	$2.1(54)$	$45.3(1150)$	$44.1(1120)$	$28.3(721)$	$8.0(205)$	$0.6(16)$	$7.4(188)$	$14.2(361.5)$	$13.4(340)$	$11.2(285)$

Note
(1) Brake resistor terminal box (H6) included when brake chopper ordered.
2.3

Adjustable Frequency Drives
SVX9000 Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9 with Flange Kit

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	Dia.
$20.9(530)$	$20.0(510)$	$19.1(485)$	$7.9(200)$	$0.2(5.5)$	$51.7(1312)$	$45.3(1150)$	$16.5(420)$	$3.9(100)$	$1.4(35)$	$0.4(9)$	$0.1(2)$	$24.9(362)$	$13.4(340)$	$4.3(109)$	$0.8(21)$

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR10 Freestanding

W1	W2	W3	W4	W5	W6	W7	H1	H2	H3	D1	D2	D3	D4	D5	D6	D7	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
$\begin{aligned} & 23.43 \\ & \text { (595) } \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 4.53 \\ & (115) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & \hline 5.95 \\ & (151) \end{aligned}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 30.11 \\ & (79) \end{aligned}$	$\begin{aligned} & 79.45 \\ & (2018) \end{aligned}$	$\begin{aligned} & 74.80 \\ & (1900) \end{aligned}$	$\begin{aligned} & 20.18 \\ & (512.5) \end{aligned}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & 17.44 \\ & (443) \end{aligned}$	$\begin{aligned} & 19.02 \\ & (483) \end{aligned}$	$\begin{aligned} & 0.47 \\ & (12) \end{aligned}$	$\begin{aligned} & 11.22 \\ & (285) \end{aligned}$	$\begin{aligned} & 17.60 \\ & (447) \end{aligned}$	$\begin{aligned} & 20.08 \\ & (510) \end{aligned}$	$\begin{aligned} & 0.83 \\ & (21) \end{aligned}$	$\begin{aligned} & 1.89 \\ & (48) \end{aligned}$	$\begin{aligned} & 0.43 \\ & (11) \end{aligned}$	$\begin{gathered} \hline 857 \\ (389) \end{gathered}$

2.3

Adjustable Frequency Drives

SVX9000 Drives

Approximate Dimensions in Inches (mm)
FR10 Open Chassis ©

Voltage	$\mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	D4	Weight Lbs (kg)
480 V	250-350	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 16.7 \\ & (425) \end{aligned}$	$\begin{aligned} & 1.2 \\ & (30) \end{aligned}$	$\begin{aligned} & 2.6 \\ & \text { (67) } \end{aligned}$	$\begin{aligned} & 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & 45.9 \\ & (1165) \end{aligned}$	$\begin{aligned} & 44.1 \\ & (1121) \end{aligned}$	$\begin{aligned} & 34.6 \\ & (879) \end{aligned}$	$\begin{aligned} & 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & 0.7 \\ & \text { (17) } \end{aligned}$	$\begin{aligned} & 24.7 \\ & (627) \end{aligned}$	$\begin{aligned} & 10.8 \\ & (275) \end{aligned}$	$\begin{aligned} & 19.9 \\ & (506) \end{aligned}$	$\begin{aligned} & 17.9 \\ & (455) \end{aligned}$	$\begin{aligned} & 16.7 \\ & (423) \end{aligned}$	$\begin{aligned} & 16.6 \\ & \text { (421) } \end{aligned}$	$\begin{aligned} & 518 \\ & (235) \end{aligned}$
575 V	200-300																	

Note
(1) 9000X FR12 is built of two FR10 modules. Please refer to SPX9000 installation manual for mounting instructions.

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21, FR11 Freestanding Drive

Voltage	hp (l_{H})	W1	W2	W3	W4	W5	W6	W7	W8	H1	H2	H3	D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
480	400-550	$\begin{aligned} & 31.26 \\ & (794) \end{aligned}$	$\begin{aligned} & 2.40 \\ & (61) \end{aligned}$	$\begin{aligned} & 6.50 \\ & (165) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & 3.43 \\ & (87) \end{aligned}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 2.52 \\ & \text { (64) } \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{aligned} & 79.45 \\ & (2018) \end{aligned}$	$\begin{aligned} & 74.80 \\ & (1900) \end{aligned}$	$\begin{aligned} & 20.18 \\ & (512.5) \end{aligned}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & 11.22 \\ & (285) \end{aligned}$	$\begin{aligned} & 19.09 \\ & (485) \end{aligned}$	$\begin{aligned} & 0.47 \\ & (12) \end{aligned}$	$\begin{aligned} & 17.60 \\ & (447) \end{aligned}$	$\begin{aligned} & 0.83 \\ & (21) \end{aligned}$	$\begin{aligned} & 1.89 \\ & (48) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.43 \\ & (9 \times 11) \end{aligned}$	$\begin{aligned} & 526 \\ & (239) \end{aligned}$

2.3

Adjustable Frequency Drives

SVX9000 Drives

Approximate Dimensions in Inches (mm)
FR11 Open Chassis

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Inverter

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	Dia. 1	Dia. 2	Dia. 3	Dia. 4	Weight Lbs (kg)
$\begin{aligned} & 27.87 \\ & (708) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 26.65 \\ & (677) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & 21.77 \\ & (553) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (16) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 9.64 \\ & (244.8) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 683 \\ & (310) \end{aligned}$

Notes

9000X FR14 is built of two FR13 modules. Please refer to SPX9000 installation manual for mounting instructions.
FR13 is built from an inverter module and a converter module. Please refer to SPX9000 installation manual for mounting instructions.
2.3

Adjustable Frequency Drives

SVX9000 Drives

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Converter

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
$\begin{aligned} & 18.74 \\ & (476) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 17.52 \\ & (445) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & \hline 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & \hline 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 14.69 \\ & (373) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (18.5) \end{aligned}$	$\begin{aligned} & 6.42 \\ & (163) \end{aligned}$	$\begin{aligned} & 2.56 \\ & \text { (65) } \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 5.24 \\ & (133) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.51 \\ & \text { (13) } \end{aligned}$	$\begin{aligned} & 0.37 \\ & \text { (9.5) } \end{aligned}$	$\begin{aligned} & 295 \\ & (134) \end{aligned}$

Number of Input Units

480V Catalog Number	hp	Input Modules		690V Catalog Number	hp	Input Modules
SPX800A0-4A2N1	800	2			SPX800A0-5A2N1 800 2 	

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Converter-900/1000 hp 480V

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Dia. 4	Weight Lbs (kg)
$\begin{aligned} & 27.87 \\ & (708) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 26.65 \\ & (677) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 14.69 \\ & (373) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (18.5) \end{aligned}$	$\begin{aligned} & 6.42 \\ & (163) \end{aligned}$	$\begin{aligned} & 2.56 \\ & (65) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 5.24 \\ & (133) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (9.5) \end{aligned}$	$\begin{aligned} & 443 \\ & (201) \end{aligned}$

Number of Input Units

480V Catalog Number	hp	Input Modules
SPX900AO-4A2N1	900	3
SPXH10A0-4A2N1	1000	3

2.3

Adjustable Frequency Drives
SVX9000 Drives

Approximate Dimensions in Inches (mm)

AC Choke Dimensions

Choke Types Catalog Number	Frame Size	Choke Type ${ }^{(1)}$	Catalog Number	Frame Size	Choke Type ${ }^{(1)}$
Voltage Range 380-500V			Voltage Range 525-690V		
SPX 2504	FR10	CHK0400	SPX 2005	FR10	CHK0261
SPX 3004		CHK0520	SPX 2505		CHK0400
SPX 3504		CHK0520	SPX 3005		CHK0400
SPX 4004	FR11	$2 \times$ CHK0400	SPX 4005	FR11	CHK0520
SPX 5004		$2 \times$ CHKO400	SPX 4505		CHK0520
SPX 5504		$2 \times$ CHK0400	SPX 5005		$2 \times$ CHK0400
SPX 6004	FR12	$2 \times$ CHK0520	SPX 5505	FR12	$2 \times$ CHK0400
SPX 6504		$2 \times$ CHK0520	SPX 6005		$2 \times$ CHK0400
SPX 7004		$2 \times$ CHK0520	SPX 7005		$2 \times$ CHK0400
SPX 8004	FR13	$2 \times$ CHK0400	SPX 8005	FR13	$2 \times$ CHK0400
SPX 9004		$3 \times$ CHK0520	SPX 9005		$2 \times$ CHK0400
SPX H10 4		$3 \times$ CHK0520	SPX H10 5		$2 \times$ CHK0400
SPX H12 4	FR14	$4 \times$ CHK0520	SPX H13 5	FR14	$4 \times$ CHK0400
SPX H16 4		$6 \times$ CHK0400	SPX H15 5		$6 \times$ CHK0400

CHK0520

Note

(1) Chokes are provided with all FR10-FR14 drives.

Approximate Dimensions in Inches (mm)

CHK0400

CHK0261

Adjustable Frequency Drives
SVX9000 Drives

SVX9000 Enclosed Drives

Product Description

- Standard Enclosedcovers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options.
- Modified Standard Enclosed-applies to specific customer requirements that vary from the standard enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Consult your Eaton representative for assistance in pricing and lead time.
- Custom Engineeredfor those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Consult your Eaton representative for assistance in pricing and lead time.

Features

- NEMA Type 1/IP21 or NEMA Type 12/IP54 enclosures
- Input voltage: 208V, 230V, 480 V and 575 V (consult factory)

Standards and Certifications

- UL Listed
- cUL Listed

- Complete range of control, network and power options
- Horsepower range:
- 208V-3/4 to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$: 1 to $100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- $230 \mathrm{~V}-3 / 4$ to $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}} ;$ 1 to $100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- 480V-1 to $700 \mathrm{hp} \mathrm{I}_{\mathrm{H}} ;$ 1-1/2 to $800 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$
- HMCP padlockable

Product Identification

Enclosed 9000X Series Drive

1 Door mounted keypad (included as standard with bypass option)
2 SVX9000 variable frequency drive
3 Input disconnect (HMCP)

- Option P1

4 Input line fuses

- Option P3

5 Input contactor (included as standard with bypass option)

6 Output contactor

- Option PE (included as standard with bypass option)
7 Bypass contactor
- Option RB
- Option RA

8 Overload relay

- Option PH
- Option PI

9115 V control transformer

- Option KB

10 Bypass pilot lights and selector switches - Option RB

- Option RA
- Option L2
- Option KF

11 Customer control and signal connection terminal block
12 Control relay

Adjustable Frequency Drives
SVX9000 Drives

Catalog Number Selection

SVX9000 Enclosed NEMA Type 1/IP21 and NEMA Type 12/IP54 Drives

Control Options	
B1 $=6 \mathrm{DI}, 1 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B5 = 3 RO (N0)
$\mathbf{B 2}=1 \mathrm{RO}$ (NC-NO), 1 RO (NO), 1 therm	B8 = 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}, 3 \mathrm{Pt} 100$
$\mathbf{B 4}=1 \mathrm{Al}(\mathrm{mA}$ isolated), $2 \mathrm{AO}(\mathrm{mA}$ isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B9 = 1 RO (NO), 5 DI 42-240 Vac input

Engineered Options

Engineered Options	
HT	High temperature rating for $50^{\circ} \mathrm{C}$ (FR10 and above) ${ }^{(8)}$
VB	Varnished boards

Notes

(1) Local/remote keypad is included as the standard control panel.
(2) Brake chopper is a factory installed option only, see drive options on Page V6-T2-18. External dynamic braking resistors not included. Consult factory
(3) Includes local/remote speed reference switch.
(4) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
(5) See Pages V6-T2-61 and V6-T2-62 for descriptions
(6) See Pages V6-T2-59 and V6-T2-60 for complete descriptions.
(7) Applicable only with FR10 and FR11 freestanding designs.
(8) Consult Eaton for availability.

Product Selection

When Ordering

- Select a base catalog number that meets the application requirementsnominal horsepower, voltage and enclosure rating (the enclosed drive's continuous output amp rating should be equal to or
greater than the motor's full load amp rating). The base enclosed package includes a standard drive, door mounted local/remote keypad and enclosure.
- If dynamic brake chopper or control/communication option is desired, change the appropriate code in the base catalog number.
- Select enclosed options. Add the codes as suffixes to the base catalog number in alphabetical and numeric order.
- Read all footnotes.

208V Drives

Input Base Drives

Enclosure Size ${ }^{1}$	hp	Current (A)	NEMA Type 1/IP21	
			Frame Size	Base Catalog Number ${ }^{(2)}$
High Overload Drive and Enclosure				
0	3/4	3.7	4	SVXF0711EA
	1	4.8		SVX00111EA
	1-1/2	6.6		SVXF1511EA
	2	7.8		SVX00211EA
	3	11		SVX00311EA
0	5	17.5	5	SVX00511EA
	7-1/2	25		SVX00711EA
1	10	31	6	SVX01011EA
	15	48		SVX01511EA
2	20	61	7	SVX02011DA
	25	75		SVX02511DA
	30	88		SVX03011DA
3	40	114	8	SVX04011DA
4	50	143	8	SVX05011DA
5	60	170	8	SVX06011DA
	75	211	9	SVX07511DA
	100	273		SVX10011DA
Low Overload Drive and Enclosure				
0	1	4.8	4	SVX00111BA
	1-1/2	6.6		SVXF1511BA
	2	7.8		SVX00211BA
	3	11		SVX00311BA
	5	17.5	5	SVX00511BA
	7-1/2	25		SVX00711BA
	10	31		SVX01011BA
1	15	48	6	SVX01511BA
	20	61		SVX02011BA
2	25	75	7	SVX02511AA
	30	88		SVX03011AA
	40	114		SVX04011AA
3	50	-	8	SVX05011AA
4	60	170	8	SVX06011AA
5	(3)	$205{ }^{3}$	8	SVX07511AA
	(3)	261 (3)	9	SVX10011AA

NEMA Type 12/IP54	
Frame Size	Base Catalog Number ${ }^{(2)}$
4	SVXF0721EA
	SVX00121EA
	SVXF1521EA
	SVX00221EA
	SVX00321EA
5	SVX00521EA
	SVX00721EA
6	SVX01021EA
	SVX01521EA
7	SVX02021DA
	SVX02521DA
	SVX03021DA
8	SVX04021DA
8	SVX05021DA
8	SVX06021DA
9	SVX07521DA
	SVX10021DA
4	SVX00121BA
	SVXF1521BA
	SVX00221BA
	SUX00321BA
5	SVX00521BA
	SVX00721BA
	SVX01021BA
6	SVX01521BA
	SVX02021BA
7	SVX02521AA
	SVX03021AA
	SVX04021AA
8	SVX05021AA
8	SVX06021AA
8	SVX07521AA
9	SVX10021AA

Notes

For brake chopper options, see Page V6-T2-63.
(1) See enclosure dimensions starting on Page V6-T2-67
(2) Includes drive, local/remote keypad and enclosure.
(3) These units are current rated ($75 \mathrm{I}_{\mathrm{L}} \mathrm{hp} 205 \mathrm{amps}, 100 \mathrm{I}_{\mathrm{L}} \mathrm{hp} 261 \mathrm{amps}$). They are not hp rated.

230V Drives

SVX9000 Enclosed Drives	Input Base Drives						2/P54
	Enclosure Size ${ }^{(1)}$	hp	Current (A)	Frame Size	Base Catalog Number ${ }^{(2)}$	Frame Size	Base Catalog Number ${ }^{2}$
	High Overload Drive and Enclosure						
	0	3/4	3.7	4	SVXF0712EA	4	SVXF0722EA
		1	4.8		SVX00112EA		SVX00122EA
		1-1/2	6.6		SVXF1512EA		SVXF1522EA
		2	7.8		SVX00212EA		SVX00222EA
		3	11		SVX00312EA		SVX00322EA
		5	17.5	5	SVX00512EA	5	SVX00522EA
		7-1/2	25		SVX00712EA		SVX00722EA
	1	10	31	6	SVX01012EA	6	SVX01022EA
		15	48		SVX01512EA		SVX01522EA
	2	20	61	7	SVX02012DA	7	SVX02022DA
		25	75		SVX02512DA		SVX02522DA
		30	88		SVX03012DA		SVX03022DA
	3	40	114	8	SVX04012DA	8	SVX04022DA
	4	50	140	8	SVX05012DA	8	SVX05022DA
	5	60	170	8	SVX06012DA	8	SVX06022DA
		75	205	9	SVX07512DA	9	SVX07522DA
		100	261		SVX10012DA		SVX10022DA
	Low Over	ad Driv	and Enclos				
	0	1	4.8	4	SVX00112BA	4	SVX00122BA
		1-1/2	6.6		SVXF1512BA		SVXF1522BA
		2	7.8		SVX00212BA		SVX00222BA
		3	11		SVX00312BA		SVX00322BA
		5	17.5	5	SVX00512BA	5	SVX00522BA
		7-1/2	25		SVX00712BA		SVX00722BA
		10	31		SVX01012BA		SVX01022BA
	1	15	48	6	SVX01512BA	6	SVX01522BA
		20	61		SVX02012BA		SVX02022BA
	2	25	75	7	SVX02512AA	7	SVX02522AA
		30	88		SVX03012AA		SvX03022AA
		40	114		SVX04012AA		SVX04022AA
	3	50	140	8	SVX05012AA	8	SVX05022AA
	4	60	170	8	SVX06012AA	8	SVX06022AA
	5	75	205	8	SVX07512AA	8	SVX07522AA
		(3)	$261{ }^{(8)}$	9	SVX10012AA	9	SVX10022AA

Notes

For brake chopper options, see Page V6-T2-63
(1) See enclosure dimensions starting on Page V6-T2-67.
(2) Includes drive, local/remote keypad and enclosure.
(3) This unit is current rated ($100 \mathrm{I}_{\mathrm{L}} \mathrm{hp} 100 \mathrm{amps}, 261 \mathrm{I}_{\mathrm{L}} \mathrm{hp}$). It is not hp rated.

480V Drives

SVX9000 Enclosed Drives	Input Base Drives						
				NEMA Type 1/IP21		NEMA Type 12/IP54	
	Enclosure Size ${ }^{1}$	hp	Current (A)	Frame Size	Base Catalog Number ${ }^{(2)}$	Frame Size	Base Catalog Number ${ }^{2}$
	High Overload Drive and Enclosure						
	0	1	2.2	4	SVX00114EA	4	SVX00124EA
		1-1/2	3.3		SVXF1514EA		SVXF1524EA
		2	4.3		SVX00214EA		SVX00224EA
		3	5.6		SVX00314EA		SVX00324EA
		5	7.6		SVX00514EA		SVX00524EA
		7-1/2	12	5	SVX00714EA	5	SVX00724EA
		10	16		SVX01014EA		SVX01024EA
		15	23		SVX01514EA		SVX01524EA
	1	20	31	6	SVX02014EA	6	SVX02024EA
		25	38		SVX02514EA		SVX02524EA
		30	46		SVX03014EA		SVX03024EA
	2	40	61	7	SVX04014DA	7	SVX04024DA
		50	72		SVX05014DA		SVX05024DA
		60	87		SVX06014DA		SVX06024DA
	3	75	105	8	SVX07514DA	8	SVX07524DA
		100	140		SVX10014DA		SVX10024DA
	4	125	170	8	SVX12514DA	8	SVX12524DA
	5	150	205	9	SVX15014DA	9	SVX15024DA
		200	245		SVX20014DA		SVX20024DA
	6,8 ${ }^{(34}$	250	300	10	SVX25014DA	10	SVX25064DA
		300	385		SVX30014DA		SVX30064DA
		350	460		SVX35014DA		SVX35064DA
	8,9(4) ${ }^{\text {(}}$	400	520	11	SVX40014DA	11	SVX40064DA
		500	590		SVX50014DA		SVX50064DA
		550	650		SVX55014DA		SVX55064DA
	©	600	730	12	SVX60014DA	12	SVX60064DA
		650	820		SVX65014DA		SVX65064DA
		700	920		SVX70014DA		SVX70064DA

Notes

For brake chopper options, see Page V6-T2-63
(1) See enclosure dimensions starting on Page V6-T2-67
(2) Includes drive, local/remote keypad and enclosure.
(3) The smaller enclosure Size 6 accommodates only power options, input disconnect (P1) and input line fuses (P3)

Bypass and other options require Size 8 . Adding any standard control option will not require the larger enclosure. (4) For other options, consult factory.
(5) The smaller enclosure Size 8 accommodates only power options, input disconnect (P1) and input line fuses (P3). Bypass and other options require Size 9 . Adding any standard control option will not require the larger enclosure. (6) Consult Eaton.
2.3

Adjustable Frequency Drives

SVX9000 Drives

SVX9000 Enclosed Drives	Input Base Drives, continued						
	Enclosure Size	hp	Current (A)	NEMA Type 1/IP21		NEMA Type 12/IP54	
				Frame Size	Base Catalog Number ${ }^{2}$	Frame Size	Base Catalog Number ${ }^{(2)}$
	Low Overload Drive and Enclosure						
	0	1-1/2	3.3	4	SVXF1514BA	4	SVXF1524BA
		2	4.3		SVX00214BA		SVX00224BA
		3	5.6		SVX00314BA		SVX00324BA
		5	7.6		SVX00514BA		SVX00524BA
		7-1/2	12		SVX00714BA		SVX00724BA
		10	16	5	SVX01014BA	5	SVX01024BA
		15	23		SVX01514BA		SVX01524BA
		20	31		SVX02014BA		SVX02024BA
	1	25	38	6	SVX02514BA	6	SVX02524BA
		30	46		SVX03014BA		SVX03024BA
		40	61		SVX04014BA		SVX04024BA
	2	50	72	7	SVX05014AA	7	SVX05024AA
		60	87		SVX06014AA		SVX06024AA
		75	105		SVX07514AA		SVX07524AA
	3	100	140	8	SVX10014AA	8	SVX10024AA
	4	125	170	8	SVX12514AA	8	SVX12524AA
		150	205		SVX15014AA		SVX15024AA
	5	200	261	9	SVX20014AA	9	SVX20024AA
		250	300		SVX25014AA		SVX25024AA
	$6,83{ }^{34}$	300	385	10	SVX30014AA	10	SVX30064AA
		350	460		SVX35014AA		SVX35064AA
		400	520		SVX40014AA		SVX40064AA
	8,9(4)	500	590	11	SVX50014AA	11	SVX50064AA
		550	650		SVX55014AA		SVX55064AA
		600	730		SVX60014AA		SVX60064AA
	(6)	650	820	12	SVX65014AA	12	SVX65064AA
		700	920		SVX70014AA		SVX70064AA
		800	1030		SVX80014AA		SVX80064AA

Notes

For brake chopper options, see Page V6-T2-63
(1) See enclosure dimensions starting on Page V6-T2-67.
(2) Includes drive, local/remote keypad and enclosure.
${ }^{(3)}$ The smaller enclosure Size 6 accommodates only power options, input disconnect (P 1) and input line fuses (P 3). Bypass and other options require Size 8. Adding any standard control option will not require the larger enclosure.
(4) For other options, consult factory.
(5) The smaller enclosure Size 8 accommodates only power options, input disconnect (P1) and input line fuses (P3). Bypass and other options require Size 9 . Adding any standard control option will not require the larger enclosure.
(6) Consult Eaton.

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Boards

Option Board Kits

Option Kit Description ${ }^{1}$	Allowed Slot Locations ${ }^{2}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	\square						
6 DI, 1 DO, 2 AI, 1AO, $1+10 \mathrm{Vdc}$ ref, $2 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	-	-	\square	-	-	-	-
Extended I/O Cards										
2 RO, therm-SPX only	B	OPTA3	A3	-	-	\square	\square	\square	\square	\square
Encoder low volt +5V/15V/24V—SPX only	C	OPTA4	A4	-	-	\square	\square	\square	\square	\square
Encoder high volt $+15 \mathrm{~V} / 24 \mathrm{~V}$-SPX only	C	OPTA5	A5	-	\square	-	\square	\square	-	\square
Double encoder-SPX only	C	OPTA7	A7	■	-	-	-	-	-	-
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$-SPX only	A	OPTA8	A8	-	-	\square	\square	\square	-	\square
3 DI (encoder 10-24V), out $+15 \mathrm{~V} /+24 \mathrm{~V}$, 2 DO (pulse+direction)—SPX only	C	OPTAE	AE	-	-	-	-	-	-	■
$6 \mathrm{DI}, 1$ ext +24 Vdc/EXT +24 Vdc	B, C, D, E	OPTB1	B1	-	-	-	-	-	-	■
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	-	-
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / E X T+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	\square	-	\square	\square	-	-	■
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	\square	\square
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	\square
Communication Cards ${ }^{(3)}$										
Modbus	D, E	OPTC2	C2	-	-	■	-	-	-	■
Modbus TCP	D, E	OPTCI	CI	\square	-	\square	\square	\square	\square	\square
BACnet	D, E	OPTCJ	CJ	\square	-	\square	\square	\square	-	\square
Ethernet IP	D, E	OPTCK	CK	\square						
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	-	-	\square	-	-	-	■
LonWorks	D, E	OPTC4	C4	\square	-	\square	\square	\square	-	\square
Profibus DP (D9 connector)	D, E	OPTC5	C5	\square	-	\square	\square	\square	-	\square
CanOpen (slave)	D, E	OPTC6	C6	\square	-	\square	\square	\square	-	\square
DeviceNet	D, E	OPTC7	C7	\square	-	\square	\square	\square	\square	-
Modbus (D9 type connector)	D, E	OPTC8	C8	\square						
Adapter-SPX only	D, E	OPTD1	D1	\square	-	-	\square	-	-	■
Adapter-SPX only	D, E	OPTD2	D2	\square	\square	\square	\square	\square	\square	■
RS-232 with D9 connection	D, E	OPTD3	D3	\square	-	\square	\square	\square	-	\square
Keypad										
9000X Series local/remote keypad	-	KEYPADLOC/REM	-	-	-	-	-	-	-	-
9000X Series remote mount keypad kit (keypad not included)	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-
9000X Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9 -pin DSUB connector (female). The baud rates range from 9.6K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CanOpen (Slave) Communications

The CanOpen (Slave) Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120$ ohms line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Johnson Controls Metasys N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network

 CommunicationsThe BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps
communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

SVX Conversion Kit

Frame 4-7 ©

Frame Size	Enclosure Size	Delivery Code	Catalog Number
FR4	0	FB10	OPTCON-SVXFR4-SZOO
	1		OPTCON-SVXFR4-SZ01
FR5	0	FB10	OPTCON-SVXFR5-SZOO
	1		OPTCON-SVXFR5-SZ01
FR6	1	FB10	OPTCON-SVXFR6-SZ01
	2		OPTCON-SVXFR6-SZ02
FR7	2	FB10	OPTCON-SVXFR7-SZ02

Note
(1) The kit consists of a flange kit, adapter plate(s), hardware, remote keypad kit and SVX9000 decal.

Control/Communication Option Descriptions

For availability, see Product Selection for base drive voltage required.

Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer-Provides the SVX9000 with the ability to adjust the frequency reference using a door-mounted potentiometer. This option uses the 10 Vdc reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the HAND position. Without the HOA bypass option, a two-position switch (labeled local/remote) is provided on the keypad to select speed reference from the speed potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch—Provides the SVX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and 4-20 mA signal.	Control
K3	3-15 PSIG Follower—Provides a pneumatic transducer which converts a $3-15$ psig pneumatic signal to either 0-8 Vdc or a 1-9 Vdc signal interface with the SVX9000. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via $6 \mathrm{ft}(1.8 \mathrm{~m})$ of flexible tubing and a $1 / 4$ in $(6.4 \mathrm{~mm})$ brass tube union.	Control
K4	HAND/OFF/AUTO Switch for Non-Bypass Configurations-Provides a three-position selector switch that allows the user to select either a HAND or AUTO mode of operation. HAND mode is defaulted to k (keypad operation, and AUTO mode is defaulted to control from an external terminal source. These modes of operation can be configured via programming to allow for alternate combinations of start and speed sources. Start and speed sources include keypad, I/O and fieldbus.	Control
K5	MANUAL/AUTO Speed Reference Switch—Provides a door-mounted selector switch for MANUAL/AUTO speed reference.	Control
K6	START/STOP Pushbuttons-Provide door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KB	115V Control Transformer, 550 VA -Provides a fused control power transformer with additional 550 VA at 115 V for customer use.	Control
KF	Bypass Test Switch for RB and RA-Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The test switch is mounted on the inside of the enclosure door.	Addl. bypass
K0	Standard Elapsed Time Meter-Provides a door-mounted elapsed run time meter.	Control
L1	Power On and Fault Pilot Lights-Provide a white power on light that indicates power to the enclosed cabinet and a red fault light that indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options-A green light indicates when the motor is running in inverter mode and an amber light that indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. bypass
LA	Green RUN Light ($\mathbf{2 2} \mathbf{~ m m) - P r o v i d e s ~ a ~ g r e e n ~ r u n ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ r u n n i n g . ~}$	Light
LD	Green STOP Light ($\mathbf{2 2} \mathbf{~ m m) - P r o v i d e s ~ a ~ g r e e n ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ s t o p p e d . ~}$	Light
LE	Red RUN Pilot Light ($\mathbf{2 2} \mathbf{~ m m) — P r o v i d e s ~ a ~ r e d ~ r u n ~ p i l o t ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ r u n n i n g . ~}$	Light
LF	Red STOP Light ($\mathbf{2 2} \mathbf{~ m m) ~ - ~ P r o v i d e s ~ a ~ r e d ~ s t o p ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ s t o p p e d . ~}$	Light
LJ	White Power On Light ($\mathbf{2 2} \mathbf{~ m m) - T h e ~} 22 \mathrm{~mm}$ white light that illuminates when the drive assembly is powered.	Light
LU	Misc. Light (22 mm) - Provides a misc. "user defined" pilot light. User to define light function and color.	Light
P1	Input Disconnect Assembly Rated to $\mathbf{1 0 0}$ kAIC—High Interrupting Motor Circuit Protector (HMCP) that provides a means of short circuit protection for the power cables between it and the SVX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the SVX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure.	Input
P2	Disconnect Switch-Disconnect switch option is applicable only with NEMA Type 1/IP21 and NEMA Type 12/IP54 freestanding drives. Allows a convenient means of disconnecting the SVX9000 from the line, and the operating mechanism can be padlocked in the OFF position. This is factory-mounted in the enclosure.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0} \mathbf{~ k A I C - P r o v i d e s ~ h i g h - l e v e l ~ f a u l t ~ p r o t e c t i o n ~ o f ~ t h e ~ S V X 9 0 0 0 ~ i n p u t ~ p o w e r ~ c i r c u i t ~ f r o m ~ t h e ~ l o a d ~ s i d e ~ o f ~ t h e ~ f u s e s ~ t o ~ t h e ~ i n p u t ~ s i d e ~ o f ~ t h e ~}$ power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
P7	MOV Surge Suppressor-Provides a Metal Oxide Varistor (MOV) connected to the line side terminals and is designed to clip line side transients.	Input
PE	Output Contactor-Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at 10A, 600 Vac are provided for customer use. Bypass options $\mathbf{R B}$ and $\mathbf{R A}$ include an output contactor as standard. This option includes a low VA 115 Vac fused control power transformer and is factory mounted in the enclosure.	Output
PF	Output Filter-Used to reduce the transient voltage (DV/DT) at the motor terminals. The output filter is recommended for cable lengths exceeding $100 \mathrm{ft}(30 \mathrm{~m})$ with a drive of 3 hp and above, for cable lengths of $33 \mathrm{ft}(10 \mathrm{~m})$ with a drive of 2 hp and below, or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure, and may be used in conjunction with a brake chopper circuit.	Output
PG	MotoRx (300-600 ft) $\mathbf{1 0 0 0} \mathbf{V / \mu S}$ DV/DT Filter—Used to reduce transient voltage (DV/DT) and peak voltages at the motor terminals. This option is comprised of a 0.5% line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the output filter (See option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600 \mathrm{ft}(91-183 \mathrm{~m})$. This option can not be used with the brake chopper circuit. The output filter (option PF) should be investigated as an alternative.	Output
PH	Single Overload Relay-Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the bypass configurations for overload current protection in the bypass mode. The overload relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output

For availability, see Product Selection for base drive voltage required.

Available Control/Communications Options, continued

Option	Description
PI	Dual Overload Relays-This option is recommended when a single drive is operating two motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50\% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.
PN	Dual Overloads for Bypass-This option is recommended when a single drive is operating two motors in the bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50\% of the drive hp rating. For example, a
	Addl. bypass
RA hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	

Enclosed Drive Options

Brake Chopper Options
The brake chopper circuit option is used for applications that require dynamic braking. Dynamic braking resistors are not included with drive
purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors are not UL Listed.

For brake chopper circuit selection and adder-NEMA Type 1/IP21, NEMA Type 12/ IP54, consult the factory.

Conformal (Varnished)
Coating (2)

Chassis Frame	Delivery Code
FR4	FP
FR5	FP
FR6	FP
FR7	FP
FR8	FP
FR9	FP
FR10	FP
FR11	FP
FR12	FP
FR13	FP
FR14	FP

208 V and 230 V Control Options $-3 / 4-100 \mathrm{hp}$ (3)

Description	Catalog Number Suffix
Door-mounted speed potentiometer	K1
Door-mounted speed potentiometer with HOA selector switch	K2
$3-15$ psig follower	K3
HAND/OFF/AUTO switch $(22 \mathrm{~mm})$	K4
MANUAL/AUTO ref switch $(22 \mathrm{~mm})$	K5
START/STOP pushbuttons $(22 \mathrm{~mm})$	K6
115 Volt control transformer 550 VA	KB
Standard elapsed time meter	K0

208 V and 230 V Light Options $-3 / 4-100 \mathrm{hp}{ }^{3}$

Description	Catalog Number Suffix
Power on/fault pilot lights $(22 \mathrm{~mm})$	L1
Green RUN light $(22 \mathrm{~mm})$	LA
Green STOP light $(22 \mathrm{~mm})$	LD
Red RUN light $(22 \mathrm{~mm})$	LE
Red STOP light $(22 \mathrm{~mm})$	LF
Power on light $(22 \mathrm{~mm})$	LJ
Misc. light $(22 \mathrm{~mm})$	LU

480V Control Options-1-800 hp (3)

Description	Catalog Number Suffix
Door-mounted speed potentiometer	K1
Door-mounted speed potentiometer with HOA selector switch	K2
$3-15$ psig follower	K3
HAND/OFF/AUTO switch $(22 \mathrm{~mm})$	K4
MANUAL/AUTO ref switch $(22 \mathrm{~mm})$	K5
START/STOP pushbuttons $(22 \mathrm{~mm})$	K6
115 Volt control transformer 550 VA	KB
Standard elapsed time meter	K0

480V Light Options - 1-800 hp (3)

Description	Catalog Number Suffix
Power on/fault pilot lights $(22 \mathrm{~mm})$	L1
Green RUN light $(22 \mathrm{~mm})$	LA
Green STOP light $(22 \mathrm{~mm})$	LD
Red RUN light $(22 \mathrm{~mm})$	LE
Red STOP light $(22 \mathrm{~mm})$	LF
Power on light $(22 \mathrm{~mm})$	LJ
Misc. light $(22 \mathrm{~mm})$	LU

Notes

(1) External dynamic braking resistors not included. Consult factory.
(2) See Product Selection on Pages V6-T2-55 to V6-T2-58, 208V, 230V and 480V. Consult the factory for adder
(3) Consult factory for adder information.

208V and 230V Bypass Options, 3/4-100 hp (12)

Description	Catalog Number Suffix
Bypass test switch for RA, RB (and RC, RD-230V)	KF
Bypass pilot lights for RA, RB options	L2
Dual overloads for bypass	PN
Manual HOA bypass controller	RA
Manual IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD

480V Bypass Options, 1-800 hp (12)

Description	Catalog Number Suffix
Bypass test switch for RA, RB, RC, RD	KF
Bypass pilot lights for RA, RB options	L2
Dual overloads for bypass	PN
Manual HOA bypass controller	RA
Manual IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD

208V and 230V Enclosure Options, Sizes 0-5 (2)

Description	Catalog Number Suffix
Floor stand 22 in $(558.8 \mathrm{~mm})$	S5
Floor stand 12 in $(304.8 \mathrm{~mm})$	S6
10 in $(254 \mathrm{~mm})$ expansion ${ }^{(3)}$	S7
20 in $(508 \mathrm{~mm})$ expansion	S8
Space heater $\left.{ }^{4}\right)$	S9

480V Enclosure Options, Sizes 0-9 (2)

Description	Catalog Number Suffix
Floor stand 22 in $(558.8 \mathrm{~mm})$	S5
Floor stand 12 in $(304.8 \mathrm{~mm})$	S6
10 in $(254 \mathrm{~mm})$ expansion $\left.{ }^{3}\right)$	S7
20 in $(508 \mathrm{~mm})$ expansion	S8
Space heater $\left.{ }^{4}\right)$	S9

Notes

(1) See Page V6-T2-62 for details.
(2) Consult factory for adder information.
${ }^{3}$ See Page V6-T2-67 for dimensions.
(4) Requires customer supplied 115 Vac supply.
(5) Not required for 208 V and 230 V applications.
(6) Output filter may be required whenever the distance from the drive to the motor exceeds $100 \mathrm{ft}(30 \mathrm{~m})$. Refer to Page V6-T2-61, option PF for further details.".
(7) Heater packs not included.
(8) Applicable with FR10 and FR11 freestanding designs only.

SVX9000 Drives

Technical Data and Specifications

9000X Enclosed Drives

Description	NEMA Type 1/IP21 or NEMA Type 12/IP54 Specification
Primary Design Features	
$45-66 \mathrm{~Hz}$ input frequency	Standard
Output: AC volts maximum	Input voltage base
Output frequency range	$0-320 \mathrm{~Hz}$
Initial output current ($\left.\right\|_{H}$)	250\% for 2 seconds
Overload (1 minute [$\left[\begin{array}{l}H\end{array} / L \mathrm{~L}\right]$)	150\%/110\%
Enclosure space heater	Optional
Oversize enclosure	Standard
Output contactor	Optional
Bypass motor starter	Optional
Listings	UL, cUL
Protection Features	
Incoming line fuses	Optional
AC input circuit disconnect	Optional
Line reactors	Standard
Phase rotation insensitive	Standard
EMI filter	Standard
Input phase loss protection	Standard
Input overvoltage protection	Standard
Line surge protection	Standard
Output short circuit protection	Standard
Output ground fault protection	Standard
Output phase protection	Standard
Overtemperature protection	Standard
DC overvoltage protection	Standard
Drive overload protection	Standard
Motor overload protection	Standard
Programmer software	Optional
Local/remote keypad	Standard
Keypad lockout	Standard
Fault alarm output	Standard
Built-in diagnostics	Standard

Description	NEMA Type 1/IP21 or NEMA Type 12/IP54 Specification
Input/Output Interface Features	
Setup adjustment provisions	
Remote keypad/display	Standard
Personal computer	Standard
Operator control provisions	
Drive mounted keypad/display	Standard
Remote keypad/display	Standard
Conventional control elements	Standard
Serial communications	Optional
115 Vac control circuit	Optional
Speed setting inputs	
Keypad	Standard
$0-10 \mathrm{Vdc}$ potentiometer/voltage signal	Standard
4-20 mA Isolated	Configurable
4-20 mA Differential	Configurable
3-15 psig	Optional
Analog outputs	
Speed/frequency	Standard
Torque/load/current	Programmable
Motor voltage	Programmable
Kilowatts	Programmable
0-10 Vdc signals	Configurable w/jumpers
4-20 mA DC signals	Standard
Isolated signals	Optional
Discrete outputs	
Fault alarm	Standard
Drive running	Standard
Drive at set speed	Programmable
Optional parameters	14
Dry contacts	1 (2 relays Form C)
Open collector outputs	1
Additional discrete outputs	Optional
Communications	
RS-232	Standard
RS-422/485	Optional
DeviceNet' ${ }^{\text {TM }}$	Optional
Modbus RTU	Optional
CanOpen (slave)	Optional
Profibus-DP	Optional
Lonworks®	Optional
Johnson Controls Metasys ${ }^{\text {TM }}$ N2	Optional

9000X Enclosed Drives, continued

Description	NEMA Type 1/IP21 or NEMA Type 12/IP54 Specification
Performance Features	
Sensorless vector control	Standard
Volts/hertz control	Standard
IR and slip compensation	Standard
Electronic reversing	Optional (1)
Dynamic braking	Standard
DC braking	Programmable
PID setpoint controller	Standard
Critical speed lockout	Standard
Current (torque) limit	Standard
Adjustable acceleration/deceleration	Standard
Linear or S curve accel/decel	7
Jog at preset speed	Selectable
Thread/preset speeds	Standard
Automatic restart	Standard
Coasting motor start	Optional
Coast or ramp stop selection	$1-16$ kHz
Elapsed time meter	Carrier frequency adjustment

Standard Conditions for Application and Service

Operating ambient temperature	0 to $40^{\circ} \mathrm{C}$
Storage temperature	-40 to $60^{\circ} \mathrm{C}$
Humidity (maximum), non-condensing	95%
Altitude (maximum without derate)	$3300 \mathrm{ft}(1000 \mathrm{~m})$
Line voltage variation	$+10 /-15 \%$
Line frequency variation	$45-66 \mathrm{~Hz}$
Efficiency	$>96 \%$
Power factor (displacement)	>0.94

Wiring Diagram

Power Diagram for Bypass Options RB and RA

Standard I/O Specifications

Description	Specification
Six-digital input programmable	24V: "0" $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}}>5$ kohms
Two-analog input configurable w/jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200$ kohms Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohms
Two-digital output programmable	Form C relays 250 Vac 30 Vdc 2 amp resistive
One-analog output programmable configurable w/jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500 ohms 10 bits $\pm 2 \%$
One digital output programmable	Open collector 48 Vdc 50 mA

I/O Specifications for Control/Communication Options

Description	Specification
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200$ kohms
Analog current, input	0 (4)-20 mA, $\mathrm{B}_{\mathrm{i}}=250$ ohms
Digital input	24V: "0" $\leq 10 \mathrm{~V}, ~ " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5$ kohms
Auxiliary voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output	0 (4)-20 mA, $\mathrm{R}_{\mathrm{L}}=500$ kohms resolution 10 bit, accuracy $\leq \pm 2 \%$
Analog voltage, output	0 (2)-10V, $R_{L} \geq 1$ kohms, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output	
Maximum switching voltage	$300 \mathrm{Vdc}, 250 \mathrm{Vac}$
Maximum switching load	8A/24 Vdc, 0.4A/300 Vdc, $2 \mathrm{kVA} / 250 \mathrm{Vac}$
Maximum continuous load	2 Arms
Thermistor input	$\mathrm{R}_{\text {trip }}=4.7$ kohms
Encoder input	24V: "0" $\leq 10 \mathrm{~V}, " 1$ " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=2.2$ kohms $5 \mathrm{~V}: ~ " 0 " \leq 2 \mathrm{~V}, " 1 " \geq 3 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=330$ ohms

Note
(1) Some horsepower units include dynamic braking chopper as standard—refer to individual drive sections.

Dimensions

Approximate Dimensions in Inches (mm)

9000X Enclosed Drives

Size 0

For reference only, dimensions are subject to change.

Wide	HighB	$\begin{aligned} & \text { Deep } \\ & \text { C } \end{aligned}$	Mounting D							Door Height	Min. Air Space	
A					E	E1	F	G	G1	H	J	K
19.9 (504)	29.0 (737)	16.4 (416)	18.3 (465)	-	-	-	27.4 (695)	-	-	25.4 (644)	4.0 (102)	3.0 (76)
Cable Entry L	M	N	P	R			CB Handle T	U	V	W	Max. Ap Shipping Lbs (kg)	eight
5.0 (127)	-	-	6.0 (152)	9.6 (245)	26.4		1.5 (38)	6.3 (160)	4.3 (108)	5.3 (134)	200 (91)	

Approximate Dimensions in Inches (mm)

Size 1

For reference only, dimensions are subject to change.

	High	Deep	Mounting							Door Height	Min. Air Space	
A	B	C	D	D1	E	E1	F	G	G1	H		
26.4 (669)	36 (914)	16.3 (414)	24.8 (630)	-	-	-	34.0 (864)	-	-	32.4 (822)	4.0 (102)	3.0 (76)
Cable Entry L	M	N	P	R	Door ClearanceS		CB Handle T	U	V	W	Max. Approx. Shipping Weight Lbs (kg)	
11.0 (279)	6.0 (152)	9.0 (229)	10.0 (254)	6.5 (165)	26.4 (669)		1.5 (38)	4.3 (108)	-	-	230 (104)	

Floor	and																				
X	Y	Z	AA	BB	CC	DD	EE	FF	GG	HH	JJ	KK	LL	MM	NN	PP	RR	SS	TT	UU	vv
$\begin{aligned} & 56.0 \\ & (1422) \end{aligned}$	$\begin{aligned} & 4.3 \\ & (108) \end{aligned}$	$\begin{aligned} & 11.1 \\ & (281) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (46) \end{aligned}$	$\begin{aligned} & 0.8 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & 55.2 \\ & (1402) \end{aligned}$	$\begin{aligned} & 26.0 \\ & (660) \end{aligned}$	$\begin{aligned} & 3.5 \\ & \text { (90) } \end{aligned}$	$\begin{aligned} & 5.5 \\ & (141) \end{aligned}$	$\begin{aligned} & 3.0 \\ & (76) \end{aligned}$	$\begin{aligned} & 6.0 \\ & \text { (152) } \end{aligned}$	$\begin{aligned} & 2.0 \\ & \text { (51) } \end{aligned}$	$\begin{aligned} & 5.4 \\ & (136) \end{aligned}$	$\begin{aligned} & 1.1 \\ & (28) \end{aligned}$	$\begin{aligned} & 8.8 \\ & (224) \end{aligned}$	$\begin{aligned} & 5.4 \\ & (137) \end{aligned}$	-	-	-	-	-	-

Approximate Dimensions in Inches (mm)

Size 2

For reference only, dimensions are subject to change.

Wide	High	Deep	Mounting		E	E1	F	G	G1	Door Height H	Min. Air Space		
A	B	C			J						K		
26.4 (669)	59.0 (1499)	19.4 (492)	24.8 (630)	-		-	-	57.0 (1448)	-	-	55.4 (1406)	4.0 (102)	3.0 (76)
Cable Entry L	M	N	P	R			CB Handle T	U	V	W	Max. Ap Shipping Lbs (kg)	eight	
5.9 (149)	-	-	12.4 (315)	9.5 (241)	26.4		1.5 (38)	4.8 (121)	5.9 (151)	-	380 (173)		

Floor S X	Y P	Z	AA	BB	CC	DD	EE	FF	GG	HH	JJ	KK	LL	MM	NN	PP	RR	SS	TT	UU	VV
$\begin{aligned} & 69.0 \\ & (1753) \end{aligned}$	$\begin{aligned} & 4.8 \\ & \text { (121) } \end{aligned}$	$\begin{aligned} & 13.6 \\ & (344) \end{aligned}$	$\begin{aligned} & 1.8 \\ & (46) \end{aligned}$	$\begin{aligned} & 0.8 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & 68.2 \\ & \text { (1732) } \end{aligned}$	$\begin{aligned} & 26.0 \\ & (660) \end{aligned}$	$\begin{aligned} & 4.8 \\ & (121) \end{aligned}$	$\begin{aligned} & 6.8 \\ & \text { (172) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & (76) \end{aligned}$	$\begin{aligned} & 6.0 \\ & (152) \end{aligned}$	$\begin{aligned} & 2.0 \\ & \text { (51) } \end{aligned}$	$\begin{aligned} & 5.0 \\ & (127) \end{aligned}$	$\begin{aligned} & 1.1 \\ & \text { (28) } \end{aligned}$	$\begin{aligned} & 11.3 \\ & (288) \end{aligned}$	$\begin{aligned} & 79.0 \\ & (2007) \end{aligned}$	$\begin{aligned} & 78.2 \\ & \text { (1986) } \end{aligned}$	-	-	-	-	-

2.3

Approximate Dimensions in Inches (mm)

Size 3

NEMA Type 1/IP21, NEMA Type 12/IP54 NEMA Type 12/IP54 Includes Cover Plates Over Louvers

Bottom View

For reference only, dimensions are subject to change.

Wide	High	Deep	Mounting						Door Height Min. Air Space A B	C	D	D1
B1	E	E1	F	G	G1	H	J	K				
$26.4(671)$	$77.0(1956)$	$19.4(493)$	$19.5(495)$	$3.3(83)$	$23.0(584)$	$1.5(38)$	$11.7(298)$	$5.5(140)$	$0.9(24)$	$76.4(1939)$	$4.0(102)$	$3.0(76)$

Cable Entry					Door Clearance S	CB Handle		V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
L	M	N	P	R		T	U								
$\begin{aligned} & 5.3 \\ & (133) \end{aligned}$	$\begin{aligned} & 23.4 \\ & (594) \end{aligned}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 1.3 \\ & (32) \end{aligned}$	$\begin{aligned} & 12.9 \\ & (328) \end{aligned}$	$\begin{aligned} & 26.4 \\ & \text { (669) } \end{aligned}$	$\begin{aligned} & 1.5 \\ & (38) \end{aligned}$	$\begin{aligned} & 8.0 \\ & (203) \end{aligned}$	$\begin{aligned} & 4.8 \\ & (121) \end{aligned}$	$\begin{aligned} & 6.8 \\ & (173) \end{aligned}$	$\begin{aligned} & 79.5 \\ & (2018) \end{aligned}$	$\begin{aligned} & 13.40 \\ & (340) \end{aligned}$	$\begin{aligned} & 0.8 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & 1.3 \\ & (32) \end{aligned}$	$\begin{aligned} & 26.0 \\ & (660) \end{aligned}$	690 (313)

Approximate Dimensions in Inches (mm)
Size 4

For reference only, dimensions are subject to change.

Wide	High	Deep	Mounting						Door Height	Min. Air Space		
A	B	C	D	D1	E	E1	F	G	G1	H	J	K
$26.4(671)$	$90.0(2286)$	$19.4(493)$	$19.5(495)$	$3.3(83)$	$23.0(584)$	$1.5(38)$	$11.7(298)$	$5.5(140)$	$0.9(24)$	$89.4(2270)$	$4.0(102)$	$3.0(76)$

Cable Entry					Door Clearance S	CB Handle		V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
L	M	N	P	R		T	U								
$\begin{aligned} & 5.3 \\ & \text { (133) } \end{aligned}$	$\begin{aligned} & 23.4 \\ & (594) \end{aligned}$	$\begin{aligned} & 13.8 \\ & (351) \end{aligned}$	$\begin{aligned} & 1.0 \\ & \text { (25) } \end{aligned}$	$\begin{aligned} & \hline 11.2 \\ & (286) \end{aligned}$	$\begin{aligned} & 26.4 \\ & (669) \end{aligned}$	$\begin{aligned} & 1.5 \\ & \text { (38) } \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & (204) \end{aligned}$	$\begin{aligned} & 4.8 \\ & \text { (121) } \end{aligned}$	-	$\begin{aligned} & 92.5 \\ & (2349) \end{aligned}$	$\begin{aligned} & 0.8 \\ & \text { (19) } \end{aligned}$	$\begin{aligned} & 1.3 \\ & \text { (32) } \end{aligned}$	-	-	825 (375)

2.3

Approximate Dimensions in Inches (mm)

Size 5

For reference only, dimensions are subject to change.

Approximate Dimensions in Inches (mm)
Size 5-1P

For reference only, dimensions are subject to change.

2.3

Approximate Dimensions in Inches (mm)
Size 5-2P
2

For reference only, dimensions are subject to change.

Approximate Dimensions in Inches (mm)
Size 6

For reference only, dimensions are subject to change. See Page V6-T2-57, notes 3 and 5 for enclosure and option selection.

Wide	High	Deep	Mounting						Door Height	Min. Air Space		
A	B	C	D	D1	E	E1	F	G	G1	H	J	K
$30.0(762)$	$90.0(2286)$	$26.0(660)$	$26.5(673)$	$1.8(46)$	-	-	$17.3(438)$	$5.5(140)$	-	$84.4(2143)$	$4.0(102)$	-

Cable	try	N	P	R	Door S	T	U	V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
$\begin{aligned} & 23.5 \\ & \text { (597) } \end{aligned}$	$\begin{aligned} & 3.3 \\ & \text { (84) } \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & (114) \end{aligned}$	$\begin{aligned} & 19.3 \\ & (490) \end{aligned}$	-	$\begin{aligned} & 26.2 \\ & (667) \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & (629) \end{aligned}$	-	-	-	$\begin{aligned} & 93.9 \\ & (2386) \end{aligned}$	-	-	-	-	1500 (681)

2.3

Adjustable Frequency Drives

SVX9000 Drives

Approximate Dimensions in Inches (mm)
Size 8

For reference only, dimensions are subject to change. See Page V6-T2-57, notes 3 and 5 for enclosure and option selection.

Wide	High	Deep	Mounting					Door Height Min. Air Space				
A	B	C	D	D1	E	E1	F	G	G1	H	J	K
$48.0(1219)$	$90.0(2286)$	$24.0(610)$	$42.2(1072)$	$3.0(77)$	-	-	-	$5.5(139)$	-	$84.4(2143)$	$4.0(102)$	-

Cable L	M	N	P	R	S	T	U	V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
$\begin{aligned} & 9.5 \\ & (241) \end{aligned}$	$\begin{aligned} & 37.5 \\ & \text { (952) } \end{aligned}$	$\begin{aligned} & 12.5 \\ & (318) \end{aligned}$	$\begin{aligned} & 7.7 \\ & (196) \end{aligned}$	$\begin{aligned} & 8.3 \\ & (210) \end{aligned}$	$\begin{aligned} & 1.3 \\ & \text { (32) } \end{aligned}$	$\begin{aligned} & 31.0 \\ & (787) \end{aligned}$	$\begin{aligned} & \hline 21.5 \\ & (545) \end{aligned}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	-	$\begin{aligned} & 93.5 \\ & (2375) \end{aligned}$	-	-	-	-	2000 (908)

Approximate Dimensions in Inches (mm)
Size 9

For reference only, dimensions are subject to change. See Page V6-T2-57, notes 3 and 5 for enclosure and option selection.

Wide	High	Deep	Mounting						Door Height	Min. Air Space		
A	B	C	D	D1	E	E1	F	G	G1	H	J	K
$60.0(1524)$	$90.0(2286)$	$260.1(664)$	$22.9(582)$	$2.0(51)$	$30.0(762)$	$44.3(1125)$	$10.6(270)$	$10.6(270)$	$8.2(208)$	-	$4.0(102)$	-

Cabl L	M	N	P	R	S	T	U	V	W	RR	SS	TT	UU	VV	Max. Approx. Shipping Weight Lbs (kg)
$\begin{aligned} & 8.5 \\ & (216) \end{aligned}$	$\begin{aligned} & 32.7 \\ & (831) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (305) \end{aligned}$	$\begin{aligned} & 11.9 \\ & (303) \end{aligned}$	$\begin{aligned} & 9.8 \\ & (249) \end{aligned}$	$\begin{aligned} & 1.5 \\ & (38) \end{aligned}$	$\begin{aligned} & 43.5 \\ & (1105) \end{aligned}$	$\begin{aligned} & 15.0 \\ & (381) \end{aligned}$	$\begin{aligned} & 7.5 \\ & \text { (191) } \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{aligned} & 93.5 \\ & (2375) \end{aligned}$	$\begin{aligned} & 27.4 \\ & (696) \end{aligned}$	$\begin{aligned} & 290.1 \\ & (738) \end{aligned}$	$\begin{aligned} & 270.1 \\ & (687) \end{aligned}$	-	2500 (1135)

Contents

Description	Page
SVX9000 Open Drives	V6-T2-17
SVX9000 Enclosed Drives	V6-T2-52
SVX9000 VFD Pump Panels	
Catalog Number Selection	V6-T2-79
Product Selection	V6-T2-80
Options	V6-T2-85
Technical Data and Specifications	V6-T2-89
Wiring Diagrams	V6-T2-91
Dimensions	V6-T2-92

Product Identification

SVX9000 Pump Application

Catalog Number Selection

SVX9000 Enclosed NEMA Type 12/IP54/3R Drive

Notes

(1) Consult factory.
(2) Local/remote keypad is included as the standard control panel.
(3) Brake chopper is a factory installed option only, see drive options on Page V6-T2-18. External dynamic braking resistors not included. Consult factory.
(4) Includes local/remote speed reference switch.
(5) Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
(6) See Page V6-T2-87 for descriptions.
(7) See Pages V6-T2-85 and V6-T2-86 for complete descriptions.
(8) Bypass options applicable only in the pump panel three-phase design.

Adjustable Frequency Drives
SVX9000 Drives

Product Selection

When Ordering

- Select a base catalog number that meets the application requirementsnominal horsepower, voltage and enclosure rating (the enclosed drive's continuous output amp rating should be equal to or
greater than the motor's full load amp rating). The base enclosed package includes a standard drive, door mounted local/remote keypad and enclosure.
- If dynamic brake chopper or control/communication option is desired, change the appropriate code in the base catalog number.
- Select enclosed options. Add the codes as suffixes to the base catalog number in alphabetical and numeric order.
- Read all footnotes.

208V Drives

Pump Panel Style (Three-Phase)

Enclosure Size	hp	NEMA Type 12/IP54		NEMA Type 3R	
		Frame Size	Base Catalog Number ${ }^{(2)}$	Frame Size	Base Catalog Number ${ }^{(2)}$
High Overload Drive and Enclosure					
A	3/4	4	SVXF0721EP	4	SVXF0731EP
	1		SVX00121EP		SVX00131EP
	1-1/2		SVXF1521EP		SVXF1531EP
	2		SVX00221EP		SVX00231EP
	3	5	SVX00321EP	5	SVX00331EP
	5		SVX00521EP		SVX00531EP
	7-1/2		SVX00721EP		SVX00731EP
	10	6	SVX01021EP	6	SVX01031EP
B	15		SVX01521EP		SVX01531EP
	20	7	SVX02021DP	7	SVX02031DP
	25		SVX02521DP		SVX02531DP
C	30		SVX03021DP		SVX03031DP
	40	8	SVX04021DP	8	SVX04031DP
	50		SVX05021DP		SVX05031DP
D	60		SVX06021DP		SVX06031DP
	75	9	SVX07521DP	9	SVX07531DP
	100		SVX10021DP		SVX10031DP
Low Overload Drive and Enclosure					
A	1	4	SVX00121BP	4	SVX00131BP
	1-1/2		SVXF1521BP		SVXF1531BP
	2		SVX00221BP		SVX00231BP
	3		SVX00321BP		SVX00331BP
	5	5	SVX00521BP	5	SVX00531BP
	7-1/2		SVX00721BP		SVX00731BP
	10		SVX01021BP		SVX01031BP
	15	6	SVX01521BP	6	SVX01531BP
B	20		SVX02021BP		SVX02031BP
	25	7	SVX02521AP	7	SVX02531AP
	30		SVX03021AP		SVX03031AP
C	40		SVX04021AP		SVX04031AP
	50	8	SVX05021AP	8	SVX05031AP
	60		SVX06021AP		SVX06031AP
D	75		SVX07521AP		SVX07531AP
	100	9	SVX10021AP	9	SVX10031AP

Notes

(1) Enclosure dimensions starting on Page V6-T2-92.
(2) Includes drive, local/remote keypad and enclosure.

SVX9000 Enclosed Drives	Pump Panel Style (Three-Phase)					
	Enclosure Size ${ }^{1}$		NEMA Type 12/IP54		NEMA Type 3R	
		hp	Frame Size	Base Catalog Number ${ }^{2}$	Frame Size	Base Catalog Number ${ }^{(2)}$
	High Overload Drive and Enclosure					
	A	3/4	4	SVXF0722EP	4	SVXF0732EP
		1		SVX00122EP		SVX00132EP
		1-1/2		SVXF1522EP		SVXF1532EP
		2		SVX00222EP		SVX00232EP
		3	5	SVX00322EP	5	SVX00332EP
		5		SVX00522EP		SVX00532EP
		7-1/2		SVX00722EP		SVX00732EP
		10	6	SVX01022EP	6	SVX01032EP
	B	15		SVX01522EP		SVX01532EP
		20	7	SVX02022DP	7	SVX02032DP
		25		SVX02522DP		SVX02532DP
	C	30		SVX03022DP		SVX03032DP
		40	8	SVX04022DP	8	SVX04032DP
		50		SVX05022DP		SVX05032DP
	D	60		SVX06022DP		SVX06032DP
		75	9	SVX07522DP	9	SVX07532DP
		100		SVX10022DP		SVX10032DP
	Low Overload Drive and Enclosure					
	A	1	4	SVX00122BP	4	SVX00132BP
		1-1/2		SVXF1522BP		SVXF1532BP
		2		SVX00222BP		SVX00232BP
		3		SVX00322BP		SVX00332BP
		5	5	SVX00522BP	5	SVX00532BP
		7-1/2		SVX00722BP		SVX00732BP
		10		SVX01022BP		SVX01032BP
		15	6	SVX01522BP	6	SVX01532BP
	B	20		SVX02022BP		SVX02032BP
		25	7	SVX02522AP	7	SVX02532AP
		30		SVX03022AP		SVX03032AP
	C	40		SVX04022AP		SVX04032AP
		50	8	SVX05022AP	8	SVX05032AP
		60		SVX06022AP		SVX06032AP
	D	75		SVX07522AP		SVX07532AP
		100	9	SVX10022AP	9	SVX10032AP

Notes
(1) Enclosure dimensions starting on Page V6-T2-92
(2) Includes drive, local/remote keypad and enclosure.

Adjustable Frequency Drives

Notes

(1) Enclosure dimensions starting on Page V6-T2-92.
(2) Includes drive, local/remote keypad and enclosure.

480V Drives

Pump Panel Style (Three-Phase)					
Enclosure Size ${ }^{\text {(}}$	hp	NEMA Type 12/IP54		NEMA Type 3R	
		Frame Size	Base Catalog Number ${ }^{(2)}$	Frame Size	Base Catalog Number ${ }^{(2)}$
High Overload Drive and Enclosure					
A	1	4	SVX00124EP	4	SVX00134EP
	1-1/2		SVXF1524EP		SVXF1534EP
	2		SVX00224EP		SVX00234EP
	3		SVX00324EP		SVX00334EP
	5		SVX00524EP		SVX00534EP
	7-1/2	5	SVX00724EP	5	SVX00734EP
	10		SVX01024EP		SVX01034EP
	15		SVX01524EP		SVX01534EP
	20	6	SVX02024EP	6	SVX02034EP
	25		SVX02524EP		SVX02534EP
B	30	7	SVX03024EP	7	SVX03034EP
	40		SVX04024DP		SVX04034DP
	50		SVX05024DP		SVX05034DP
	60		SVX06024DP		SVX06034DP
C	75	8	SVX07524DP	8	SVX07534DP
	100		SVX10024DP		SVX10034DP
	125		SVX12524DP		SVX12534DP
D	150	9	SVX15024DP	9	SVX15034DP
	200		SVX20024DP		SVX20034DP
Consult factory	250	10	SVX25024DP	10	SVX25034DP
	300		SVX30024DP		SVX30034DP
	350		SVX35024DP		SVX35034DP
Low Overload Drive and Enclosure					
A	1-1/2	4	SVXF1524BP	4	SVXF1534BP
	2		SVX00224BP		SVX00234BP
	3		SVX00324BP		SVX00334BP
	5		SVX00524BP		SVX00534BP
	7-1/2		SVX00724BP		SVX00734BP
	10	5	SVX01024BP	5	SVX01034BP
	15		SVX01524BP		SVX01534BP
	20		SVX02024BP		SVX02034BP
	25	6	SVX02524BP	6	SVX02534BP
	30		SVX03024BP		SVX03034BP
B	40	7	SVX04024BP	7	SVX04034BP
	50		SVX05024AP		SVX05034AP
	60		SVX06024AP		SVX06034AP
	75		SVX07524AP		SVX07534AP
C	100	8	SVX10024AP	8	SVX10034AP
	125		SVX12524AP		SVX12534AP
	150		SVX15024AP		SVX15034AP
D	200	9	SVX20024AP	9	SVX20034AP
	250		SVX25024AP		SVX25034AP
Consult factory	300	10	SVX30024AP	10	SVX30034AP
	400		SVX40024AP		SVX40034AP

Notes

(1) Enclosure dimensions starting on Page V6-T2-92.
(2) Includes drive, local/remote keypad and enclosure.
2.3

Adjustable Frequency Drives
SVX9000 Drives

SVX9000 Enclosed Drives	Pump Panel Style (Single-Phase)					
			NEMA Type 12/IP54		NEMA Type 3R	
	Enclosure Size ${ }^{(1)}$	hp	Frame Size	Base Catalog Number ${ }^{(2)}$	Frame Size	Base Catalog Number ${ }^{(2)}$
15	Low Overload Drive and Enclosure					
	A	3/4	4	SVXF072KBP	4	SVXF073KBP
		1		SVX0012KBP		SVX0013KBP
		2		SVX0022KBP		SVX0023KBP
		3		SVX0032KBP		SVX0033KBP
		5	5	SVX0052KBP	5	SVX0053KBP
		7-1/2		SVX0072KBP		SVX0073KBP
		10		SVX0102KBP		SVX0103KBP
		15	6	SVX0152KBP	6	SVX0153KBP
		20		SVX0202KBP		SVX0203KBP
	B	25	7	SVX0252KAP	7	SVX0253KAP
		30		SVX0302KAP		SVX0303KAP
	C	40	8	SVX0402KAP	8	SVX0403KAP
		50		SVX0502KAP		SVX0503KAP
		60		SVX0602KAP		SVX0603KAP

Notes

(1) Enclosure dimensions starting on Page V6-T2-92.
(2) Includes drive, local/remote keypad and enclosure.

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Board Kits

Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{2}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	■	\square	■	\square	-	\square	\square
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{Vdc}$ ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	■	\square	-	\square	-	\square	\square
Extended I/O Cards										
$6 \mathrm{DI}, 1$ ext +24 Vdc/EXT +24 Vdc	B, C, D, E	OPTB1	B1	-	-	-	-	-	\square	\square
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	\square
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	■	■	■	-	-	■	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	■	■
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	\square
Communication Cards ${ }^{(3)}$										
Modbus	D, E	OPTC2	C2	■	\square	\square	\square	-	\square	\square
Modbus TCP	D, E	OPTCI	CI	\square	\square	\square	\square	-	\square	\square
BACnet	D, E	OPTCJ	CJ	-	-	-	\square	\square	\square	\square
Ethernet IP	D, E	OPTCK	CK	\square						
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	\square	\square	\square	\square	-	\square	\square
LonWorks	D, E	OPTC4	C4	\square						
Profibus DP (D9 connector)	D, E	OPTC5	C5	\square						
CanOpen (slave)	D, E	OPTC6	C6	\square	\square	-	\square	\square	\square	\square
DeviceNet	D, E	OPTC7	C7	\square	\square	\square	\square	-	\square	\square
Modbus (D9 type connector)	D, E	OPTC8	C8	\square						
RS-232 with D9 connection	D, E	OPTD3	D3	\square	■	■	■	■	■	■
Keypad										
9000X Series local/remote keypad	-	KEYPADLOC/REM	-	-	-	-	-	-	-	-
9000X Series remote mount keypad kit	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-
9000X Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Adjustable Frequency Drives

SVX9000 Drives

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9 -pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

Profibus Network Communications

The Profibus Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a Profibus-DP network. The interface is connected by a 9 -pin DSUB connector (female). The baud rates range from 9.6K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CanOpen (Slave) Communications

The CanOpen (Slave)
Network Card OPTC6 is used for connecting the 9000X Drive to a host system According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m} .120$ ohms line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250 K baud and 500 K baud.

Johnson Controls Metasys N2 Network Communications

The OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Control/Communication Option Descriptions

For availability, see Product Selection for base drive voltage required.

Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer-Provides the SVX9000 with the ability to adjust the frequency reference using a door-mounted potentiometer. This option uses the 10 Vdc reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the HAND position. Without the HOA bypass option, a two-position switch (labeled local/remote) is provided on the keypad to select speed reference from the Speed Potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch—Provides the SVX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and 4-20 mA signal.	Control
K5	MANUAL/AUTO Speed Reference Switch-Provides a door-mounted selector switch for MANUAL/AUTO speed reference.	Control
K6	START and STOP Pushbuttons ($\mathbf{2 2} \mathbf{~ m m}$)—START (green) STOP (red). Provide door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
K9	(2) Factory Installed Auxiliary Contacts-Provide two NO/NC auxiliary contacts.	Power
L1	Power On and Fault Pilot Lights-Provide a white power on light that indicates power to the enclosed cabinet and a red fault light that indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options-A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. Bypass
LD	Green STOP Light ($\mathbf{2 2} \mathbf{~ m m) - P r o v i d e s ~ a ~ g r e e n ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ s t o p p e d . ~}$	Light
LE	Red RUN Pilot Light ($\mathbf{2 2} \mathbf{~ m m) ~ - ~ P r o v i d e s ~ a ~ r e d ~ r u n ~ p i l o t ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ r u n n i n g . ~}$	Light
LU	Misc. Light (22 mm) - Provides a misc. "user defined" pilot light. User to define light function and color.	Light
LW	PTT (Push-To-Test) Light (22 mm)—Provides misc. "user defined" PTT pilot light. User to define light function and color.	Light
LY	Adder for LED Each-Changes light packages from standard incandescent bulb to LED style bulb.	Light
P1	Input Disconnect Assembly Rated to $\mathbf{1 0 0} \mathbf{~ k A I C - H i g h ~ I n t e r r u p t i n g ~ M o t o r ~ C i r c u i t ~ P r o t e c t o r ~ (H M C P) ~ t h a t ~ p r o v i d e s ~ a ~ m e a n s ~ o f ~ s h o r t ~ c i r c u i t ~ p r o t e c t i o n ~ f o r ~ t h e ~ p o w e r ~}$ cables between it and the SVX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the SVX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0} \mathbf{k A I C}$ —Provide high-level fault protection of the SVX9000 input power circuit from the load side of the fuses to the input side of the power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
P7	MOV Surge Suppressor-Provides a Metal Oxide Varistor (MOV) connected to the line side terminals and is designed to clip line side transients.	Input
P8	TVSS Transient Voltage Surge Suppressor-Provides transient voltage surge suppression of the unit. Consult factory for ratings.	Input
PE	Output Contactor-Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at $10 \mathrm{~A}, 600 \mathrm{Vac}$ are provided for customer use. Bypass option RA includes an output contactor as standard. This option includes a low VA 115 Vac fused control power transformer and is factory mounted in the enclosure.	Output
RA	Manual HOA Bypass Controller-The Manual HAND/OFF/AUTO (HOA)-3-contactor—bypass option provides a means of bypassing the SVX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input disconnect, a fused control power transformer, and a full voltage bypass starter with a door mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. For applications up to 100 hp , a Freedom Series IEC input contactor, a Freedom Series IEC output contactor, and a Freedom Series IEC starter with a bimetallic overload relay is included. For applications above 100 hp , an Advantage input contactor, an Advantage output contactor and an Advantage starter with electronic overload protection is included. The contactors are mechanically and electrically interlocked (see power diagram on Page V6-T2-91).	Bypass
S5	Floor Stand 22 in-Converts a Size A or B, normally wall mounted enclosure to a floor standing enclosure with a height of 22 in (558.8 mm).	Enclosure
S9	Space Heater without CPT-Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. A 200W heater is installed in enclosures A and B , and 400 W heater is installed in enclosures C and D . Requires a customer supplied 115 V remote supply source.	Enclosure
SA	Space Heater with CPT- Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. A 200W heater is installed in enclosures A and B, and 400 W heater is installed in enclosures C and D . Provided with CPT connected to load side of input disconnect.	Enclosure
SB	Ice Cube Style Control Relay-Provides misc. "user defined" 4PDT control relay. Requires user to define functionality.	Enclosure
SE	On-Delay Timer (Delay on Make) - Provides misc. "user defined" time delay relay. Requires user to define functionality and time setting requirement.	Enclosure
SF	Off-Delay Timer (Delay on Break)-Provides misc. "user defined" time delay relay. Requires user to define functionality and time setting requirement.	Enclosure

VFD Pump Panel Options

Brake Chopper Options (1)
208V and 230V: NEMA Type 12/IP54/3R, I I_{H} hp 3/4 to 100; IL hp 1 to 100
480V: NEMA Type 12/IP54/3R, I_{H} hp 1 to 400; I_{L} hp $1-1 / 2$ to 400
208V and 230V Control Options, 3/4-100 hp (2)

Description	Catalog Number Suffix
Door-mounted speed potentiometer	K1
Door-mounted speed potentiometer with HOA selector switch	K2
Manual/auto reference switch $(22 \mathrm{~mm})$	K5
START and STOP pushbuttons $(22 \mathrm{~mm})$	K6

208V, 230V and 480V Enclosure Options, Sizes A-D (2)

Description	Catalog Number Suffix
Floor stand 22 in $(558.8 \mathrm{~mm})$	S5
Space heater without CPT	S9
Space heater with CPT	SA
Socket type control relay	SB
On-delay timer	SE
Off-delay timer	SF

208 and 230V Power Options, 3/4-100 hp (2)

Description	Catalog Number Suffix
Two auxiliary contacts installed	K9
Input disconnect (HMCP) 100 kAIC	P1
Input line fuses 200 kAIC	P3
Input power surge protection	P7
TVSS transient voltage surge suppressor	P8
Output contactor	PE

480V Power Options, 1-400 hp (2)

Description	Catalog Number Suffix
Two auxiliary contacts installed	K9
Input disconnect (HMCP) 100 kAIC	P1
Input line fuses 200 kAIC	P3
Input power surge protection	P7
TVSS transient voltage surge suppressor	P8
Output contactor	PE

208 and 230V Bypass Options, 3/4-100 hp (23

Description	Catalog Number Suffix
Bypass pilot lights for RA option	L2 $^{\oplus}{ }^{(4)}$
Manual HOA bypass controller	RA ${ }^{\oplus}$

480V Bypass Options, 1-400 hp (23

Description	Catalog Number Suffix
Bypass pilot lights for RA option	${\text { L2 }{ }^{(4)}}^{\text {Manual HOA bypass controller }}$

SVX9000 Drives

Technical Data and Specifications

9000X VFD Pump Panels

Description	NEMA Type 12/IP54 or NEMA Type 3R Specification
Primary Design Features	
$45-66 \mathrm{~Hz}$ input frequency	Standard
Output (AC volts maximum)	Input voltage base
Output frequency range	$0-320 \mathrm{~Hz}$
Initial output current ($\left.\right\|_{H}$)	250\% for 2 seconds
Overload (1 minute [$\left[L_{H} / L_{L}\right]$)	150\%/110\%
Enclosure space heater	Optional
Oversize enclosure	Standard
Output contactor	Optional
Bypass motor starter	Optional
Listings	UL, cUL
Protection Features	
Incoming line fuses	Optional
AC input circuit disconnect	Optional
Line reactors	Standard
Phase rotation insensitive	Standard
EMI filter	Standard-Thru Frame 9
Input phase loss protection	Standard
Input overvoltage protection	Standard
Line surge protection	Standard
Output short circuit protection	Standard
Output ground fault protection	Standard
Output phase protection	Standard
Overtemperature protection	Standard
DC overvoltage protection	Standard
Drive overload protection	Standard
Motor overload protection	Standard
Programmer software	Optional
Local/remote keypad	Standard
Keypad lockout	Standard
Fault alarm output	Standard
Built-in diagnostics	Standard

Description	NEMA Type 12/IP54 or NEMA Type 3R Specification
Input/Output Interface Features	
Setup adjustment provisions	
Remote keypad/display	Standard
Personal computer	Standard
Operator control provisions	
Drive mounted keypad/display	Standard
Remote keypad/display	Standard
Conventional control elements	Standard
Serial communications	Optional
115 Vac control circuit	Optional
Speed setting inputs	
Keypad	Standard
$0-10 \mathrm{Vdc}$ potentiometer/voltage signal	Standard
4-20 mA isolated	Configurable
4-20 mA differential	Configurable
Analog outputs	
Speed/frequency	Standard
Torque/load/current	Programmable
Motor voltage	Programmable
Kilowatts	Programmable
$0-10 \mathrm{Vdc}$ signals	Configurable w/jumpers
4-20 mA DC signals	Standard
Isolated signals	Optional
Discrete outputs	
Fault alarm	Standard
Drive running	Standard
Drive at set speed	Programmable
Optional parameters	14
Dry contacts	1 (2 relays Form C)
Open collector outputs	1
Additional discrete outputs	Optional
Communications	
RS-232	Standard
RS-422/485	Optional
DeviceNet ${ }^{\text {TM }}$	Optional
Modbus RTU	Optional
CanOpen (slave)	Optional
Profibus-DP	Optional
Lonworks ${ }^{\circledR}$	Optional
Johnson Controls Metasys ${ }^{\text {™ }}$ N2	Optional

9000X VFD Pump Panels, continued

Description	NEMA Type 12/IP54 or NEMA Type 3R Specification
Performance Features	
Sensorless vector control	Standard
Volts/hertz control	Standard
IR and slip compensation	Standard
Electronic reversing	Standard
Dynamic braking	Optional ${ }^{1}$
DC braking	Standard
PID setpoint controller	Programmable
Critical speed lockout	Standard
Current (torque) limit	Standard
Adjustable acceleration/deceleration	Standard
Linear or S curve accel/decel	Standard
Jog at preset speed	Standard
Thread/preset speeds	7
Automatic restart	Selectable
Coasting motor start	Standard
Coast or ramp stop selection	Standard
Elapsed time meter	Optional
Carrier frequency adjustment	1-16 kHz
Standard Conditions for Application and Service	
Operating ambient temperature	0 to $40^{\circ} \mathrm{C}$
Storage temperature	-40 to $60^{\circ} \mathrm{C}$
Humidity (maximum), non-condensing	95\%
Altitude (maximum without derate)	$3300 \mathrm{ft}(1000 \mathrm{~m})$
Line voltage variation	+10/-15\%
Line frequency variation	${ }^{45-66 ~ H z}$
Efficiency	>96\%
Power factor (displacement)	0.96

Standard I/O Specifications

Description	Specification
Six-digital input programmable	24V: "0" $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}}>5$ kohms
Two-analog input configurable w/jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200$ kohms Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohms
Two-digital output programmable	Form C relays 250 Vac 30 Vdc 2 amp resistive
One-analog output programmable configurable w/jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500 ohms 10 bits $\pm 2 \%$
One digital output programmable	Open collector 48 Vdc 50 mA

I/O Specifications for Control/Communication Options

Description	Specification
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}} \geq 200$ kohms
Analog current, input	0 (4)-20 mA, $\mathrm{R}_{\mathrm{i}}=250$ ohms
Digital input	$24 \mathrm{~V}:$ "0" $\leq 10 \mathrm{~V}, ~ " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5$ kohms
Auxiliary voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output	0 (4)- $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500$ kohms, resolution 10 bit, accuracy $\leq+2 \%$
Analog voltage, output	0 (2) $-10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k}$ kohms, resolution 10 bit, accuracy $\leq \pm 2 \%$
Relay output	
Maximum switching voltage	$300 \mathrm{Vdc}, 250 \mathrm{Vac}$
Maximum switching load	8A/24 Vdc, 0.4A/300 Vdc, $2 \mathrm{kVA} / 250 \mathrm{Vac}$
Maximum continuous load	2 Arms
Thermistor input	$\mathrm{R}_{\text {trip }}=4.7$ kohms

Note

(1) Some horsepower units include dynamic braking chopper as standard—refer to individual drive sections.

Wiring Diagrams

Power Diagram for Bypass Option RA

A2 Board Control Wiring

A9 Board Control Wiring

Basic I/O Board A9	

SVX9000 Pump Panel Bypass Power Wiring

SVX9000 Pump Panel Disconnect Power Wiring

2.3

Adjustable Frequency Drives
SVX9000 Drives

Dimensions

Approximate Dimensions in Inches (mm)

SVX9000 Pump Application Drives

Enclosure Box A NEMA Type 12/IP54

Voltage AC	$\begin{aligned} & \text { hp } \\ & \left(I_{H}\right) \end{aligned}$	$\begin{aligned} & \mathrm{hp} \\ & \left(\mathrm{I}_{\mathrm{L}}\right) \end{aligned}$	H	H1	H2	W	W1	D	D1	Approx. Weight Lbs (kg)	Approx. Shipping Weight Lbs (kg)
Three-Phase											
208V	3/4-10	1-15	$\begin{aligned} & 29.00 \\ & (736.6) \end{aligned}$	$\begin{aligned} & 27.00 \\ & (685.8) \end{aligned}$	$\begin{aligned} & 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & 16.92 \\ & (429.8) \end{aligned}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	120 (54)	160 (73)
230 V	3/4-10	1-15									
480 V	1-25	1-30									
Single-Phase											
230 V	-	3/4-10	$\begin{aligned} & 29.00 \\ & (736.6) \end{aligned}$	$\begin{aligned} & 27.00 \\ & (685.8) \end{aligned}$	$\begin{aligned} & 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & 16.92 \\ & (429.8) \end{aligned}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	120 (54)	160 (73)
480 V	-	3/4-20									

Approximate Dimensions in Inches (mm)
Enclosure Box B NEMA Type 12/IP54

Voltage AC	$\begin{aligned} & \text { hp } \\ & \left(I_{H}\right) \end{aligned}$	$\underset{\left(I_{L}\right)}{\mathbf{h p}^{\prime}}$	H	H1	H2	W	W1	D	D1	Approx. Weight Lbs (kg)	Approx. Shipping Weight Lbs (kg)
Three-Phase											
208 V	15-25	20-30	$\begin{aligned} & 40.00 \\ & -(1016.0) \end{aligned}$	$\begin{aligned} & 38.00 \\ & (965.2) \end{aligned}$	$\begin{aligned} & 36.35 \\ & \text { (923.3) } \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	185 (84)	229 (104)
230 V	15-25	20-30									
480 V	30-60	40-75									
Single-Phase											
230 V	-	15-20	$\begin{aligned} & \hline 40.00 \\ & (1016.0) \end{aligned}$	$\begin{aligned} & 38.00 \\ & (965.2) \end{aligned}$	$\begin{aligned} & 36.35 \\ & \text { (923.3) } \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & \hline 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & \hline 2.34 \\ & (59.4) \end{aligned}$	185 (84)	229 (104)
480 V	-	25-30									

Approximate Dimensions in Inches (mm)
Enclosure Box C NEMA Type 12/IP54
2

Voltage AC	$\operatorname{hp}_{\left(I_{H}\right)}$	$\operatorname{hp}_{\left(I_{L}\right)}$	H	H1	H2	H3	H4	W	W1	D	D1	Approx. Shipping Weight Lbs (kg)
Three-Phase												
208 V	30-50	40-60	$\begin{aligned} & \hline 52.00 \\ & (1320.8) \end{aligned}$	$\begin{aligned} & 50.00 \\ & (1270.0) \end{aligned}$	$\begin{aligned} & 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & \hline 72.00 \\ & (1828.8) \end{aligned}$	$\begin{aligned} & 71.19 \\ & (1808.2) \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & 16.78 \\ & (426.2) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	(1)
230 V	30-50	40-60										
480 V	75-125	100-150										
Single-Phase												
230 V	-	25-40	$\begin{aligned} & \hline 52.00 \\ & -(1320.8) \end{aligned}$	$\begin{aligned} & 50.00 \\ & (1270.0) \end{aligned}$	$\begin{aligned} & 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & \hline 72.00 \\ & (1828.8) \end{aligned}$	$\begin{aligned} & \hline 71.19 \\ & (1808.2) \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & 16.78 \\ & (426.2) \end{aligned}$	$\begin{aligned} & 2.34 \\ & (59.4) \end{aligned}$	(1)
480 V	-	40-60										

Note

(1) Consult factory.

Approximate Dimensions in Inches (mm)
Enclosure Box A NEMA Type 3R

Voltage AC	$\begin{aligned} & h p \\ & \left(I_{H}\right) \end{aligned}$	$\begin{aligned} & \text { hp } \\ & \left(I_{L}\right) \end{aligned}$	H	H1	H2	H3	W	W1	W2	W3	D	D1	D2	Approx. Weight Lbs (kg)	Approx. Shipping Weight Lbs (kg)
Three-Phase															
208 V	3/4-10	1-15	$\begin{aligned} & 33.00 \\ & -(838.2) \end{aligned}$	$\begin{aligned} & 31.36 \\ & (796.5) \end{aligned}$	29.67 (753.6)	$\begin{aligned} & 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & 21.05 \\ & (534.7) \end{aligned}$	$\begin{aligned} & 16.92 \\ & (429.8) \end{aligned}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & 2.07 \\ & (52.6) \end{aligned}$	$\begin{aligned} & 17.24 \\ & (437.9) \end{aligned}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	170 (77)	215 (98)
230 V	3/4-10	1-15													
480 V	1-25	1-30													
Single-Phase															
230 V	-	3/4-10	$\begin{aligned} & 33.00 \\ & (838.2) \end{aligned}$	$\begin{aligned} & 31.36 \\ & (796.5) \end{aligned}$	$\begin{aligned} & 29.67 \\ & (753.6) \end{aligned}$	$\begin{aligned} & 25.35 \\ & (643.9) \end{aligned}$	$\begin{aligned} & 21.05 \\ & (534.7) \end{aligned}$	$\begin{aligned} & 16.92 \\ & (429.8) \end{aligned}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & 2.07 \\ & (52.6) \end{aligned}$	$\begin{aligned} & 17.24 \\ & (437.9) \end{aligned}$	$\begin{aligned} & 16.26 \\ & (413.0) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	170 (77)	215 (98)
480 V	-	3/4-20													

2.3

Adjustable Frequency Drives

SVX9000 Drives

Approximate Dimensions in Inches (mm)
Enclosure Box B NEMA Type 3R

Voltage AC	$\operatorname{hp}_{\left(I_{H}\right)}$	$\begin{aligned} & \mathbf{h p} \\ & \left(I_{L}\right) \end{aligned}$	H	H1	H2	H3	W	W1	W2	W3	D	D1	D2	Approx. Weight Lbs (kg)	Approx. Shipping Weight Lbs (kg)
Three-Phase															
208 V	15-25	20-30	$\begin{aligned} & 46.09 \\ & (1170.7) \end{aligned}$	$\begin{aligned} & 44.45 \\ & (1129.0) \end{aligned}$	$\begin{aligned} & 42.77 \\ & (1086.4) \end{aligned}$	$\begin{aligned} & 36.35 \\ & (923.3) \end{aligned}$	$\begin{aligned} & 26.31 \\ & (668.3) \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & 2.69 \\ & (68.3) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	$\begin{aligned} & 235 \\ & (107) \end{aligned}$	$\begin{aligned} & 290 \\ & (132) \end{aligned}$
230 V	15-25	20-30													
480 V	30-60	40-75													
Single-Phase															
230 V	-	15-20	$\begin{aligned} & 46.09 \\ & (1170.7) \end{aligned}$	$\begin{aligned} & 44.45 \\ & (1129.0) \end{aligned}$	$\begin{aligned} & 42.77 \\ & (1086.4) \end{aligned}$	$\begin{aligned} & 36.35 \\ & (923.3) \end{aligned}$	$\begin{aligned} & 26.31 \\ & (668.3) \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & 2.69 \\ & (68.3) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	$\begin{aligned} & 235 \\ & (107) \end{aligned}$	$\begin{aligned} & 290 \\ & (132) \end{aligned}$
480 V	-	25-30													

Approximate Dimensions in Inches (mm)
Enclosure Box C NEMA Type 3R

Voltage AC	$\operatorname{hp}_{\left(I_{H}\right)}$	$\operatorname{hp}_{\left(I_{L}\right)}$	H	H1	H2	H3	H4	H5	W	W1	W2	W3	D	D1	D2	Approx. Weight Lbs (kg)
Three-Phase																
208	30-50	40-60	$\begin{aligned} & 58.09 \\ & -(1475.5) \end{aligned}$	$\begin{aligned} & 56.45 \\ & (1433.8) \end{aligned}$	$\begin{aligned} & 54.77 \\ & (1391.2) \end{aligned}$	$\begin{aligned} & 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & 78.09 \\ & (1983.5) \end{aligned}$	$\begin{aligned} & 77.64 \\ & (1972.1) \end{aligned}$	$\begin{aligned} & 37.73 \\ & \text { (958.3) } \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & 3.34 \\ & (84.8) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.77 \\ & (426.0) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	(1)
230	30-50	40-60														
480	75-125	100-150														
Single-Phase																
230 V	-	25-40	$\begin{aligned} & 58.09 \\ & (1475.5) \end{aligned}$	$\begin{aligned} & \hline 56.45 \\ & (1433.8) \end{aligned}$	$\begin{aligned} & 54.77 \\ & (1391.2) \end{aligned}$	$\begin{aligned} & 48.35 \\ & (1228.1) \end{aligned}$	$\begin{aligned} & \hline 78.09 \\ & (1983.5) \end{aligned}$	$\begin{aligned} & 77.64 \\ & (1972.1) \end{aligned}$	$\begin{aligned} & 37.73 \\ & \text { (958.3) } \end{aligned}$	$\begin{aligned} & 30.92 \\ & (785.4) \end{aligned}$	$\begin{aligned} & 29.30 \\ & (744.2) \end{aligned}$	$\begin{aligned} & 3.34 \\ & (84.8) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.77 \\ & (426.0) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	(1)
480 V	-	40-60														

(1) Consult factory.

SPX9000 Drives

Product Description

The SPX9000 Series Adjustable Frequency Drives from Eaton's electrical sector are specifically designed for high performance applications. Equipped with high processing power, the SPX9000 can use information from an encoder or a resolver in order to provide very precise motor control. Sensorless vector and simple frequency control are also supported. Typical applications requiring high performance are: masterslave drives, positioning applications, winder tension control and synchronization.

The core of the SPX9000 is a fast microprocessor, providing high dynamic performance for applications where good motor handling and reliability are required. It can be used both in open loop applications as well as in applications requiring encoder feedback.

The SPX9000 supports fast drive-to-drive communication It also offers an integrated data logger functionality for analysis of dynamic events without the need of additiona hardware. Simultaneous fast monitoring of several drives can be done by using the 9000Xdrive tool and CAN communication. In applications where reliability and quality are essential for high-performance, the SPX9000 is the logical choice.

Contents

Description	Page
SPX9000 Drives	
Features and Benefits	V6-T2-99
Standards and Certifications	V6-T2-99
Catalog Number Selection	V6-T2-100
Product Selection	V6-T2-101
Accessories	V6-T2-106
Options	V6-T2-107
Replacement Parts	V6-T2-112
Technical Data and Specifications	V6-T2-120
Dimensions	V6-T2-121

The Eaton family of drives includes HVX9000, H-Max, M-Max, SVX9000, SLX9000 and SPX9000. 9000X Series drive ratings are rated for either high overload (l_{H}) or low overload ($\left.\right|_{\llcorner }$). I indicates 110\% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes.

Features and Benefits

- Speed error <0.01\%, depending on the encoder
- Incremental or absolute encoder support
- Encoder voltages of 5 V (RS-422), 15 V or 24 V , depending on the option card
- Full torque control at all speeds, including zero
- Torque accuracy <2\%; <5\% down to zero speed
- Starting torque $>200 \%$, depending on motor and drive sizing
- Integrated datalogger for system analysis
- Fast multiple drive monitoring with PC
- Full capability for master/ slave configurations
- High-speed bus (12 Mbit/s) for fast inter-drive communication
- High-speed applications (up to 7200 Hz) possible
- Robust design—proven 500,000 hours MTBF
- Integrated 3\% line reactors standard on drives from FR4 through FR9
- Line reactor is included but is separated from chassis
- EMI/RFI Filters H standard up to $200 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}$, $100 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 230 \mathrm{~V}$
- Simplified operating menu allows for typical programming changes, while programming mode provides control of everything
- Quick Start Wizard built into the programming of the drive ensures a smooth start-up
- Keypad can display up to three monitored parameters simultaneously
- LOCAL/REMOTE operation from keypad
- Copy/paste function allows transfer of parameter settings from one drive to the next
- Standard NEMA Type 12/ IP54 keypad on all drives
- Hand-held auxiliary 240 power supply allows programming/monitoring of control module without applying full power to the drive
- The SPX can be flexibly adapted to a variety of needs using our preinstalled "Seven in One" precision application programs consisting of:
- Basic
- Standard
- Local/remote
- Multi-step speed control
- PID control
- Multi-purpose control
- Pump and fan control with auto change
- Additional I/O and communication cards provide plug and play functionality
- I/O connections with simple quick connection terminals
- Control logic can be powered from an external auxiliary control panel, internal drive functions and fieldbus if necessary
- Brake chopper standard from: 1-30 hp/380-500V 3/4-15 hp/208-230V
- NEMA Type 1/IP21 enclosures available Frame Sizes FR4-FR11, NEMA Type 12/IP54 enclosures available Frame Sizes FR4FR10 (FR10 and FR11 freestanding drives)
- Open chassis FR10 and greater
- Standard option board configuration includes an A9 I/O board and an A2 relay output board installed in slots A and B

Standards and Certifications

Product

- IEC 61800-2

Safety

- UL 508C

EMC (at default settings)

- Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H
- UL Listed

Adjustable Frequency Drives

SPX9000 Drives

Catalog Number Selection

SPX9000 Adjustable Frequency Drives

Power Module

Notes

(1) All 230 V drives and 480 V drives up to $200 \mathrm{hp}\left(l_{H}\right)$ are only available with input option 1 (EMC level H). 480 V drives $250 \mathrm{hp}\left(l_{H}\right)$ or larger are available with input option $\mathbf{2}$ (EMC level N). 575 V drives $200 \mathrm{hp}\left(l_{H}\right)$ or larger are available with input option 2.575V drives up to $150 \mathrm{hp}\left(l_{H}\right)$ are available with input option $\mathbf{4}$ (EMC level L). 480 V and 690 V freestanding drives are available with input option $\mathbf{4}$ (EMC level L).
(2) 480 V drives up to $30 \mathrm{hp}\left(l_{H}\right)$ are only available with brake chopper option $\mathbf{B} .480 \mathrm{~V}$ drives $40 \mathrm{hp}\left(I_{H}\right)$ or larger come standard with brake chopper option $\mathbf{N} .230 \mathrm{~V}$ drives up to $15 \mathrm{hp}\left(\mathrm{l}_{\mathrm{H}}\right)$ are only available with brake chopper option \mathbf{B}. 230 V drives 20 hp and larger come standard with brake chopper option \mathbf{N}. All 575 V drives come standard without brake chopper option (\mathbf{N}). $\mathbf{N}=\mathbf{N o}$ brake chopper.
(3) 480 V drives $250-350 \mathrm{hp}\left(I_{H}\right)$ and 690 V drives $200-300 \mathrm{hp}\left(I_{H}\right)$ are available with enclosure style $\mathbf{0}$ (chassis). 480V and 690 V FR10 freestanding drives are available with $\mathbf{1}$ (NEMA Type 1/IP21) or $\mathbf{2}$ (NEMA Type 12/IP54). FR11 freestanding drives are only available with enclosure style 1 (NEMA Type 1/IP21).
(4) Factory promise delivery. Consult sales office for availability.

Product Selection

230V Drives

208-240V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (I_{L})	Current (IL_{L})	Catalog Number
FR4	FP	3/4	3.7	1	4.8	SPXF07A2-2A1B1
		1	4.8	1-1/2	6.6	SPX001A2-2A1B1
		1-1/2	6.6	2	7.8	SPXF15A2-2A1B1
		2	7.8	3	11	SPX002A2-2A1B1
		3	11	-	12.5	SPX003A2-2A1B1
FR5	FP	-	12.5	5	17.5	SPX004A2-2A1B1
		5	17.5	7-1/2	25	SPX005A2-2A1B1
		7-1/2	25	10	31	SPX007A2-2A1B1
FR6	FP	10	31	15	48	SPX010A2-2A1B1
		15	48	20	61	SPX015A2-2A1B1
FR7	FP	20	61	25	75	SPX020A2-2A1N1
		25	75	30	88	SPX025A2-2A1N1
		30	88	40	114	SPX030A2-2A1N1
FR8	FP	40	114	50	140	SPX040A2-2A1N1
		50	140	60	170	SPX050A2-2A1N1
		60	170	75	205	SPX060A2-2A1N1
FR9	FP	75	205	100	261	SPX075A2-2A1N1
		100	261	-	-	SPX100A2-2A1N1

480V Drives

380-500V, NEMA Type 1/IP21 Freestanding Drives

Frame Size	Delivery Code	hp $\left(\mathbf{I}_{\mathbf{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp $\left(\mathbf{I}_{\mathbf{L}}\right)$	Current $\left(\mathbf{I}_{\mathbf{L}}\right)$	Catalog Number
FR10	W	250	330	300	385	SPX250A1-4A4N1
	FP	300	385	350	460	SPX300A1-4A4N1
W	350	460	400	520	SPX350A1-4A4N1	
FR11	FP	400	520	500	590	SPX400A1-4A4N1
	FP	500	590	550	650	SPX500A1-4A4N1
	FP	550	650	600	730	SPX550A1-4A4N1

Note
Integrated fuses as standard. Limited option selection available; 115V transformer (KB), light kit (L1), HOA (K4), speed potentiometer w/HOA (K2), Disconnect switch (P2). See Freestanding Option selection on Page V6-T2-111.

380-500V, NEMA Type 12/IP54 Drives

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current ($\mathrm{I}_{\text {L }}$)	Catalog Number
FR4	W	1	2.2	1-1/2	3.3	SPX001A2-4A1B1
	FP	1-1/2	3.3	2	4.3	SPXF15A2-4A1B1
	FP	2	4.3	3	5.6	SPX002A2-4A1B1
	W	3	5.6	5	7.6	SPX003A2-4A1B1
	W	5	7.6	-	9	SPX005A2-4A1B1
	FP	-	9	7-1/2	12	SPX006A2-4A1B1
FR5	W	7-1/2	12	10	16	SPX007A2-4A1B1
		10	16	15	23	SPX010A2-4A1B1
		15	23	20	31	SPX015A2-4A1B1
FR6	W	20	31	25	38	SPX020A2-4A1B1
		25	38	30	46	SPX025A2-4A1B1
		30	46	40	61	SPX030A2-4A1B1
FR7	FP	40	61	50	72	SPX040A2-4A1N1
		50	72	60	87	SPX050A2-4A1N1
		60	87	75	105	SPX060A2-4A1N1
FR8	FP	75	105	100	140	SPX075A2-4A2N1
		100	140	125	170	SPX100A2-4A1N1
		125	170	150	205	SPX125A2-4A1N1
FR9	FP	150	205	200	261	SPX150A2-4A1N1
		200	245	250	300	SPX200A2-4A1N1

380-500V, NEMA Type 12/IP54 Freestanding Drives

Frame Size	Delivery Code	hp $\left(\mathbf{I}_{\mathbf{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp $\left(\mathbf{I}_{\mathbf{L}}\right)$	Current $\left(\mathbf{l}_{\mathbf{L}}\right)$	Catalog Number
FR10	$F P$	250	330	300	385	SPX250A2-4A4N1
	$F P$	300	385	350	460	SPX300A2-4A4N1
	$F P$	350	460	400	520	SPX350A2-4A4N1

380-500V, Open Chassis Drives

Frame Size	Delivery Code	hp (l_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp ($\mathrm{L}_{\text {L }}$)	Current ($\mathrm{l}_{\text {L }}$)	Catalog Number
FR10	W	250	330	300	385	SPX250A0-4A2N1
		300	385	-	460	SPX300A0-4A2N1
		350	460	400	520	SPX350A0-4A2N1
FR11	FP	400	520	500	590	SPX400A0-4A2N1
		500	590	-	650	SPX500A0-4A2N1
		-	650	600	730	SPX550A0-4A2N1
FR12	FP	600	730	-	820	SPX600A0-4A2N1
		-	820	700	920	SPX650A0-4A2N1
		700	920	800	1030	SPX700A0-4A2N1
FR13	FP	800	1030	900	1150	SPX800A0-4A2N1
		900	1150	1000	1300	SPX900A0-4A2N1
		1000	1300	1200	1450	SPXH10A0-4A2N1
FR14	FP	1200	1600	1500	1770	SPXH12A0-4A2N1
		1600	1940	1800	2150	SPXH16A0-4A2N1

Notes
Integrated fuses as standard. Limited option selection available; 115V transformer (KB), light kit (L1), HOA (K4), speed potentiometer w/HOA (K2), disconnect switch (P2). See Freestanding Option selection on Page V6-T2-111.
(1) FR10-FR14 includes 3\% line reactor, but it is not integral to chassis.

Adjustable Frequency Drives

SPX9000 Drives

575V Drives

SPX9000 Open Drives	525-690V, NEMA Type 1/IP21 Drives						
	Frame Size	Delivery Code	hp (l_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current ($\mathrm{I}_{\text {L }}$)	Catalog Number
	FR6	W	2	3.3	3	4.5	SPX002A1-5A4N1
			3	4.5	-	5.5	SPX003A1-5A4N1
			-	5.5	5	7.5	SPX004A1-5A4N1
			5	7.5	7-1/2	10	SPX005A1-5A4N1
			7-1/2	10	10	13.5	SPX007A1-5A4N1
			10	13.5	15	18	SPX010A1-5A4N1
			15	18	20	22	SPX015A1-5A4N1
			20	22	25	27	SPX020A1-5A4N1
			25	27	30	34	SPX025A1-5A4N1
	FR7	W	30	34	40	41	SPX030A1-5A4N1
			40	41	50	52	SPX040A1-5A4N1
	FR8	W	50	52	60	62	SPX050A1-5A4N1
			60	62	75	80	SPX060A1-5A4N1
			75	80	100	100	SPX075A1-5A4N1
	FR9	W	100	100	125	125	SPX100A1-5A4N1
			125	125	150	144	SPX125A1-5A4N1
			150	144	-	170	SPX150A1-5A4N1
			-	170	200	208	SPX175A1-5A4N1

525-690V, NEMA Type 1/IP21 Freestanding Drives

Frame Size	Delivery Code	hp $\left(\mathbf{I}_{\mathbf{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp $\left(\mathbf{I}_{\mathbf{L}}\right)$	Current $\left(\mathbf{I}_{\mathbf{L}}\right)$	Catalog Number
FR10	FP	200	208	250	261	SPX200A1-5A4N1
		250	261	300	325	SPX250A1-5A4N1
	300	325	400	385	SPX300A1-5A4N1	
FR11	FP	400	385	450	460	SPX400A1-5A4N1
		450	460	500	502	SPX450A1-5A4N1
		500	502	550	590	SPX500A1-5A4N1

Note
Integrated fuses as standard. Limited option selection available; 115V transformer (KB), light kit (L1), HOA (K4), speed potentiometer w/HOA (K2), disconnect switch (P2). See Freestanding Option selection on Page V6-T2-111.

525-690V, NEMA Type 12/IP54 Drives

	Frame Size	Delivery Code	hp (H_{H})	Current ($\mathrm{I}_{\mathbf{H}}$)	hp (L_{L})	Current (l_{L})	Catalog Number
	FR6	F1	2	3.3	3	4.5	SPX002A2-5A4N1
(1) ${ }^{4}$			3	4.5	-	5.5	SPX003A2-5A4N1
8			-	5.5	5	7.5	SPX004A2-5A4N1
			5	7.5	7-1/2	10	SPX005A2-5A4N1
			7-1/2	10	10	13.5	SPX007A2-5A4N1
			10	13.5	15	18	SPX010A2-5A4N1
			15	18	20	22	SPX015A2-5A4N1
			20	22	25	27	SPX020A2-5A4N1
			25	27	30	34	SPX025A2-5A4N1
	FR7	FP	30	34	40	41	SPX030A2-5A4N1
			40	41	50	52	SPX040A2-5A4N1
	FR8	FP	50	52	60	62	SPX050A2-5A4N1
			60	62	75	80	SPX060A2-5A4N1
			75	80	100	100	SPX075A2-5A4N1
	FR9	FP	100	100	125	125	SPX100A2-5A4N1
			125	125	150	144	SPX125A2-5A4N1
			150	144	-	170	SPX150A2-5A4N1
			-	170	200	208	SPX175A2-5A4N1

525-690V, NEMA Type 12/IP54 Freestanding Drives

Frame Size	Delivery Code	hp $\left(\mathbf{I}_{\mathbf{H}}\right)$	Current $\left(\mathbf{I}_{\mathbf{H}}\right)$	hp $\left(\mathbf{I}_{\mathbf{L}}\right)$	Current $\left(\mathbf{I}_{\mathbf{L}}\right)$	Catalog Number
FR10	FP	200	208	250	261	SPX200A2-5A4N1
		250	261	300	325	SPX250A2-5A4N1
	300	325	400	385	SPX300A2-5A4N1	

525-690V, Open Chassis Drives

Frame Size	Delivery Code	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	Current ($\mathrm{I}_{\mathbf{H}}$)	hp ($\mathrm{L}_{\text {L }}$)	Current (I_{L})	Catalog Number
FR10	FP	200	208	250	261	SPX200A0-5A2N1
		250	261	300	325	SPX250A0-5A2N1
		300	325	400	385	SPX300A0-5A2N1
FR11	FP	400	385	450	460	SPX400A0-5A2N1
		450	460	500	502	SPX450A0-5A2N1
		500	502	-	590	SPX500A0-5A2N1
FR12	FP	-	590	600	650	SPX550A0-5A2N1
		600	650	700	750	SPX600A0-5A2N1
		700	750	800	820	SPX700A0-5A2N1
FR13	FP	800	820	900	920	SPX800A0-5A2N1
		900	920	1000	1030	SPX900A0-5A2N1
		1000	1030	1250	1180	SPXH10A0-5A2N1
FR14	FP	1350	1300	1500	1500	SPXH13A0-5A2N1
		1500	1500	2000	1900	SPXH15A0-5A2N1
		2000	1900	2300	2250	SPXH20A0-5A2N1

Notes

Integrated fuses as standard. Limited option selection available; 115V transformer (KB), light kit (L1), HOA (K4), speed potentiometer w/HOA (K2), disconnect switch (P2). See Freestanding Option selection on Page V6-T2-111.
(1) FR10-FR14 includes 3% line reactor, but it is not integral to chassis.

Accessories

Demo Drive and Power Supply

Demo Drive and Power Supply

Description	Catalog Number
$9000 X$ demo drive	9000XDEMO
Hand-held 24V auxiliary power supply—Used to supply power to the control module in order to perform keypad programming before the drive is connected to line voltage	$\mathbf{9 0 0 0 X A U X 2 4 V}$

NEMA Type 12/IP54 Conversion Kit

The NEMA Type 12/IP54 kit option is used to convert a NEMA Type 1/IP21 to a NEMA Type 12/IP54 drive. The NEMA Type 12/IP54
kit consists of a metal drive shroud, fan kit for some frames, adaptor plate and plugs.

NEMA Type 12/IP54 Conversion Kit

Frame Size	Delivery Code	Approximate Dimensions in Inches (mm)			Approximate Weight Lb (kg)	Catalog Number
		Length	Width	Height		
FR4	W	13 (330)	7 (178)	4 (102)	4 (1.8)	OPTN12FR4
FR5		16 (406)	8 (203)	7 (178)	$5(2.3)$	OPTN12FR5
FR6		21 (533)	10 (254)	5 (127)	7 (3.2)	OPTN12FR6

Flange Kits

Flange Kit NEMA Type

12/IP54

The flange kit is utilized when the power section is mounted through the back panel of an enclosure. Includes flange mount brackets and NEMA Type 12/IP54 fan components. Metal shroud not included.
Flange kits for NEMA Type
12/IP54 enclosure drive rating
are determined by rating of
drive.

Note

(1) For installation of an SPX9000 NEMA Type 1/IP21 drive into a NEMA Type 12/IP54 oversized enclosure.

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.

The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Board Kits

Option Kit Description ${ }^{(1)}$	Allowed Slot Locations	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	-	-	-	-	-	\square	\square
6 DI, 1 DO, 2 AI, 1A0, 1 +10 Vdc ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	-	-	-	-	-	-	■
Extended I/O Cards										
2 RO, therm	B	OPTA3	A3	-	\square	-	\square	-	-	-
Encoder low volt $+5 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA4	A4	-	-	-	\square	-	\square	-
Encoder high volt $+15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA5	A5	-	\square	\square	\square	-	\square	\square
Double encoder-SPX only	C	OPTA7	A7	\square	\square	\square	\square	-	\square	\square
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$	A	OPTA8	A8	-	\square	-	-	-	\square	\square
6 DI, 1 DO, 2 AI, 1A0, 1 +10 Vdc ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA1	-	-	-	-	-	-	\square	-
3 DI (encoder 10-24V), out $+15 \mathrm{~V} /+24 \mathrm{~V}$, 2 DO (pulse+direction)-SPX only	C	OPTAE	AE	-	-	-	-	-	-	-
6 DI, 1 DO, 2 AI, 1AO, $1+10 \mathrm{Vdc}$ ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTAFA1	-	-	■	-	-	-	-	-
$6 \mathrm{DI}, 1$ ext +24 Vdc/EXT +24 Vdc	B, C, D, E	OPTB1	B1	-	-	-	-	-	-	\square
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	\square
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	-	■	-	-	-	■	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	\square	\square
$1 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	-
SPI, absolute encoder	C	OPTBB	BB	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.

Adjustable Frequency Drives

SPX9000 Drives

2

Option Boards

Option Board Kits, continued

Option Kit Description ${ }^{1}$	Allowed Slot Locations ${ }^{(2)}$	Field Installed Catalog Number	Factory Installed SVX Ready Programs							
			Option Designator	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Communication Cards ${ }^{3}$										
Modbus	D, E	OPTC2	C2	■	■	\square	\square	\square	\square	■
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	CI	■	\square	■	■	\square	■	-
BACnet	D, E	OPTCJ	CJ	\square	\square	\square	■	■	■	■
Ethernet IP	D, E	OPTCK	CK	\square						
Profibus DP	D, E	OPTC3	C3	\square	\square	\square	\square	\square	■	\square
LonWorks	D, E	OPTC4	C4	■	\square	■	\square	\square	\square	\square
Profibus DP (D9 connector)	D, E	OPTC5	C5	\square	■	\square	■	\square	■	\square
CanOpen (slave)	D, E	OPTC6	C6	\square	\square	\square	\square	\square	\square	■
DeviceNet	D, E	OPTC7	C7	\square	\square	\square	■	■	\square	\square
Modbus (D9 type connector)	D, E	OPTC8	C8	■	\square	■	\square	-	■	■
Adapter-SPX only	D, E	OPTD1	D1	\square						
Adapter-SPX only	D, E	OPTD2	D2	\square	■	\square	■	\square	\square	\square
RS-232 with D9 connection	D, E	OPTD3	D3	■	\square	\square	■	\square	\square	■
Keypad										
9000X Series local/remote keypad (replacement keypad)	-	KEYPAD- LOC/REM	-	-	-	-	-	-	-	■
9000X Series remote mount keypad unit (keypad not included, includes 10 ft cable, keypad holder, mounting hardware)	-	OPTRMT- KIT-9000X	-	-	-	-	-	-	-	-
9000X Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a $9-$-pin DSUB connector (female) and the baud rate ranges from 300 to 19200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

PROFIBUS Network Communications

The PROFIBUS Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a PROFIBUS-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6 K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CANopen (Slave) Communications

The CANopen (Slave)
Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m}$. 120 ohms line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250K baud and 500 K baud.

Johnson Controls Metasys N2

 Network CommunicationsThe OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory installed option and as a field installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks utilizing Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network

Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1-127.

Ethernet/IP Network

 CommunicationsThe Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol", the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Adjustable Frequency Drives

SPX9000 Drives

Control Panel Options

Factory Options

SPX9000 Drive Options

Brake Chopper Options
The brake chopper circuit option is used for applications that require dynamic braking. Dynamic braking resistors are not included with drive
purchase. Consult the factory for dynamic braking resistors which are supplied separately. Resistors are not UL Listed.

For brake chopper circuit selection and adder-NEMA Type 1/IP21, NEMA Type 12/ IP54, Chassis, consult the factory. Delivery code is FP.

Conformal (Varnished) Coating (2) Chassis Frame	Delivery Code
FR4	FP
FR5	FP
FR6	FP
FR7	FP
FR8	FP
FR9	FP
FR10	FP
FR11	FP
FR12	FP
FR13	FP
FR14	FP

Conformal Coated Board Kits ${ }^{\text {(8) }}$

Field Installed Catalog Number	Factory Installed Option Designator
OPT_V ${ }^{(4)}$	${ }^{\ominus}$

Notes

(1) Consult factory.
(2) See Product Selection on Pages V6-T2-101 to V6-T2-105, 208-240V, 380-500V, 525-690V. Consult the factory for adder
(3) See option catalog numbers on Page V6-T2-107.
(4) Replace "_-" with the correct catalog number from Page V6-T2-107. Example: OPTC2V.
(8) Construct catalog numbers for factory installed per Catalog Number Selection on Page V6-T2-100.

Control/Communication Options

Available Control/Communications Options

Option	Description	Option Type
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch—Provides the SPX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and $4-20 \mathrm{~mA}$ signal.	Control
K4	HAND/OFF/AUTO Switch for Non-Bypass Configurations—Provides a three-position selector switch that allows the user to select either a HAND or AUTO mode of operation. HAND mode is defaulted to keypad operation, and AUTO mode is defaulted to control from an external terminal source. These modes of operation can be configured via programming to allow for alternate combinations of start and speed sources. Start and speed sources include keypad, $1 / 0$ and fieldbus.	Control
KB	115V Control Transformer, 550 VA-Provides a fused control power transformer with additional 550 VA at 115 V for customer use.	Control
L1	Power On and Fault Pilot Lights-Provide a white power on light that indicates power to the enclosed cabinet and a red fault light that indicates a drive fault has occurred.	Light
P2	Disconnect Switch—Disconnect switch option is applicable only with NEMA Type 1/IP21 and NEMA Type 12/IP54 Freestanding drives. Allows a convenient means of disconnecting the SPX9000 from the line, and the operating mechanism can be padlocked in the OFF position. This is factory-mounted in the enclosure.	Input

SPX Freestanding Options

480 V and 690 V Control Options, 200-550 hp ©

Description	Catalog Number Suffix
Door-mounted speed potentiometer with HOA selector switch	K2
HAND/OFF/AUTO switch $(22 \mathrm{~mm})$	K4
115 volt control transformer 550 VA	KB

480V and 690V Light Options, 200-550 hp (1)

Description	Catalog Number Suffix
Power on/fault pilot lights	L1

Input Options, 200-550 hp (1)

Description	Catalog Number Suffix
Disconnect switch	P2 $^{(2)}$

Notes

(1) Consult factory for adder information.
(2) Applicable with FR10 and FR11 freestanding designs only.

Adjustable Frequency Drives

SPX9000 Drives

Replacement Parts

SPX9000 Drives Spare Units

208-690V, Frames 4-12

Description	Catalog Number
Control unit-Includes the control board, blue base housing, installed SVX9000 software program and blue flip cover.	CSBSO0000000000
Does not include any OPT boards or keypad. See Page V6-T2-107 for standard and option boards and keypad.	

SPX9000 Drives Replacement Parts

208-240V, Frames FR4-FR8

Note

(1) I_{L} only; has no corresponding I_{H} rated hp rating.

208-240V, Frames FR4-FR8, continued

Frame hp (I_{H}):	4 $3 / 4$	1	1-1/2	2	3	5 $5{ }^{\text {® }}$	5	7-1/2	6 10	15	7 20	25	30	8 40	50	60	Delivery Code	Catalog Number
Cooling Fans																		
	1	1	1	1	1												W	PP01060
						1	1	1									W	PP01061
									1	1							W	PP01062
											1	1	1				W	PP01063
														1	1	1	FC	PP01123 ${ }^{\text {2 }}$
	1	1	1	1	1												W	PP01086
						1	1	1	1	1							FC	PP01088
											1	1	1				W	PP01049
														1	2	2	FC	CP01180
														1	1	1	FC	PP08037
IGBT Modules																		
	1	1															W	CP01304
			1														W	CP01305
				1	1	1											W	CP01306
							1										W	CP01307
								1									W	CP01308
									1								W	PP01022
										1							W	PP01023
											1						W	PP01024
												1					W	PP01025
													1				W	PP01029
														1			W	PP01026
															1	1	W	PP01027
Choppers/Rectifiers																		
									1								W	CP01367
										1							W	CP01368
Diode/Thyristor Modules																		
											3	3	3				W	PP01035
														3	3	3	W	CP01268
Rectifying Boards																		
											1	1	1				W	VB00242
														1	1	1	W	VB00227

Note

(2) PP00061 capacitor not included in main fan; please order separately.

Adjustable Frequency Drives
SPX9000 Drives

380-500V, Frames FR4-FR9

Electrolytic Capacitors																					
2	2	2	2																	W	PP01000
				2	2															W	PP01001
						2	2													W	PP01002
								2												W	PP01003
									2	2	2									W	PP01004
												2	2	2	4	4	4	8	8	W	PP01005
Cooling Fans																					
1	1	1	1	1	1															W	PP01060
						1	1	1												W	PP01061
									1	1	1									W	PP01062
												1	1	1						W	PP01063
															1	1	1			FC	PP01123 ${ }^{\text {2 }}$
																		1	1	FC	PP01080 (3)
1	1	1	1	1	1															W	PP01086
						1	1	1												FC	PP01088
									1	1	1	1	1	1						W	PP01049
															1	1	1			FC	CP01180
																		$1{ }^{4}$	2	W	PP01068
																		1	1	FC	PP09051

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) PPOO061 capacitor not included in main fan; please order separately.
${ }^{3}$ PP00011 capacitor not included in main fan; please order separately.
(4) For FR9 NEMA Type 12/IP54 you need two PP01068 internal fans.

380-500V, Frames FR4-FR9, continued

Notes

(1) IL only; has no corresponding I_{H} rated hp rating.
${ }^{(2)}$ See Page V6-T2-100 for details.

Adjustable Frequency Drives
SPX9000 Drives

380-500V, Frames FR10-FR12

	10			11			12				
Frame hp (l_{H}):	250	300	350	400	500	550	600	650	700	Delivery Code	Catalog Number
Control Board											
	1	1	1	1	1	1	1	1	1	W	VB00561
Shunt Boards											
6										FC	VB00537
		6								FC	VB00497
		6					12	12	12	FC	VB00498
				9						FC	VB00538
				9						FC	VB00513
						9				FC	VB00514
Driver Boards											
				3	3	3				FC	VB00489
	1	1	1				2	2	2	FC	VB00487
Driver Adapter Board											
	1	1	1				2	2	2	FC	VB00330
ASIC Board											
	1	1	1	1	1	1	2	2	2	FC	VB00451
Feedback Interface Board											
							2	2	2	FC	VB00448
Star Coupler Board											
							1	1	1	FC	VB00336
Power Modules											
	1	1	1	2	2	2	2	2	2	FC	FR10820 ${ }^{(1)}$
	2	2	2							FC	FR10828
1										FC	FR10-250-4-ANS ${ }^{2}{ }^{2}$
		1								FC	FR10-300-4-ANS ${ }^{2}{ }^{2}$
		1					2	2	2	FC	FR10-350-4-ANS ${ }^{2}{ }^{2}$
				3						FC	FR11-400-4-ANS ${ }^{(2)}$
				3						FC	FR11-500-4-ANS ${ }^{2}{ }^{2}$
						3				FC	FR11-550-4-ANS ${ }^{(2)}$
Electrolytic Capacitors											
	2	2	2	3	3	3	4	4	4	FC	PP00060
	12	12	12	18	18	18	24	24	24	FC	PP01005
Fuses											
	1	1	1	1	1	1	2	2	2	FC	PP01094
	2	2	2	2	2	2	4	4	4	FC	PP01095
Cooling Fans and Isolation Transformers											
	2	2	2	3	3	3	4	4	4	FC	VB00299
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{(3)}$
	2	2	2				4	4	4	FC	PP01068
	1	1	1	1	1	1	2	2	2	FC	PP01096
	1	1	1				2	2	2	FC	FR10844
	1	1	1	3	3	3	2	2	2	FC	FR10845
	1	1	1				2	2	2	FC	FR10846
	1	1	1	3	3	3	2	2	2	FC	FR10847
Rectifying Board											
	1	1	1	2	2	2	2	2	2	FC	VB00459

Notes

(1) Rectifying board not included.
(2) See Page V6-T2-100 for details.
(3) PP00060 capacitor not included in main fan; please order separately.

525-690V, Frames FR6-FR9

Frame hp (I_{H}):	$\begin{aligned} & 6 \\ & 2 \end{aligned}$	3	$5{ }^{1}$	5	7-1/2	10	15	20	25	7 30	40	8 50	60	75	9 100	125	150	200 (1)	Delivery Code	Catalog Number
Control Board																				
	1	1	1	1	1	1	1	1	1	1	1					1	1	1	W	VB00561
Driver Boards																				
	1																		FB	VB00404-0004-6
		1																	FB	VB00404-0005-6
			1																FB	VB00404-0007-6
				1															FB	VB00404-0010-6
					1														FB	VB00404-0013-6
						1													FB	VB00404-0018-6
							1												FB	VB00404-0022-6
								1											FB	VB00404-0027-6
									1										FB	VB00404-0034-6
Power Boards																				
	1	1	1	1	1	1	1	1	1										FB	VB00414
										1									FB	VB00419-0041-6
											1								FB	VB00419-0052-6
												1							FB	VB00422-0062-6
													1						FB	VB00422-0080-6
														1					FB	VB00422-0100-6
Power Modules																				
															1				FC	FR09-100-5-ANS ${ }^{(2)}$
																1			FC	FR09-125-5-ANS ${ }^{2}$
																	1		FC	FR09-150-5-ANS ${ }^{(2)}$
																		1	FC	FR09-175-5-ANS ${ }^{2}$)
Electrolytic Capacitors																				
	2	2	2	2	2	2	2	2	2										FC	PP01093
										2	2	4	4		8	8	8	8	FC	PP01041
														4					FC	PP01040
Fuses																				
												1	1	1	1	1	1	1	W	PP01094
												2	2	2	2	2	2	2	W	PP01095

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) See Page V6-T2-100 for details.

Adjustable Frequency Drives

SPX9000 Drives

525-690V, Frames FR6-FR9, continued

Frame hp (I_{H}):	6 2	3	$5{ }^{1}$	5	7-1/2	10	15	20	25	7 30	40	8 50	60	75	9 100	125	150	200 (1)	Delivery Code	Catalog Number
Cooling Fans																				
	1	1	1	1	1														W	PP01061
						1	1	1	1										W	PP01062
										1	1								W	PP01063
												1	1	1					FC	PP01123
	1	1	1	1	1	1	1	1	1	1	1								W	PP01049
												1	1	1					FC	CP01180
															1	1	1	$1{ }^{(2)}$	W	PP01068
															1	1	1	1	FC	PP01080
Fan Power Supply																				
																1	1	1	FC	VB00299
IGBT Modules																				
	3	3	3	3	3	3	3	3	3										FC	PP01091
										1	1								FC	PP01089
												1	1	1					FC	PP01127
IGBT/Diode (Brake)																				
	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	FC	PP01040
	Diode Module																			
	1	1	1	1	1	1	1	1	1										FC	PP01092
	Diode/Thyristor Modules																			
										3	3								FC	PP01071
															3	3	3	3	FC	PP01072
	Rectifying Boards																			
										1	1								FC	VB00442
															1	1	1	1	FC	VB00460
	Rectifying Module Sub-Assemblies																			
																1	1	1	W	FR09810
																1	1	1	FC	FR09811

Notes

(1) I_{L} only; has no corresponding I_{H} rated hp rating.
(2) For NEMA Type 12/IP54, two PP01068 internal fans are needed.

525-690V, Frames FR10-FR12

Frame hp (I_{H}):	$\begin{aligned} & 10 \\ & 250 \end{aligned}$	300	350	$\begin{aligned} & 11 \\ & 400 \end{aligned}$	500	550	$\begin{aligned} & \hline 12 \\ & \hline 600 \\ & \hline \end{aligned}$	650	700	Delivery Code	Catalog Number	2
Component Boards												
	1	1	1	1	1	1	1	1	1	W	VB00561	
	1	1	1	1	1	1	2	2	2	FC	VB00451	
6										FC	VB00545	
		6								FC	VB00510	
		6					12	12	12	FC	VB00511	
	1	1	1				2	2	2	FC	VB00330	
	1	1	1				2	2	2	FC	VB00487	
				3	3	3				FC	VB00489	
				9						FC	VB00546	
				9						FC	VB00547	
						9				FC	VB00512	
							2	2	2	FC	VB00448	
							1	1	1	FC	VB00336	
Power Modules												
	1	1	1	2	2	2	2	2	2	FC	FR10821 ${ }^{(1)}$	
	2	2	2							FC	FR10829	
1										FC	FR10-200-5-ANS ${ }^{(2)}$	
		1								FC	FR10-250-5-ANS ${ }^{(2)}$	
		1					2	2	2	FC	FR10-300-5-ANS ${ }^{(2)}$	
				3						FC	FR11-400-5-ANS ${ }^{2}{ }^{2}$	
				3						FC	FR11-450-5-ANS ${ }^{2}{ }^{2}$	
						3				FC	FR11-500-5-ANS ${ }^{2}{ }^{2}$	
Electrolytic Capacitors												
	2	2	2	3	3	3	4	4	4	FC	PP00060	
	12	12	12	18	18	18	24	24	24	FC	PP01099	
Fuses												
	1	1	1	1	1	1	2	2	2	FC	PP01094	
	2	2	2	2	2	2	4	4	4	FC	PP01095	
Cooling Fans and Isolation Transformers												
	2	2	2	3	3	3	4	4	4	FC	VB00299	
	2	2	2	3	3	3	4	4	4	FC	PP01080 ${ }^{(3)}$	
	2	2	2				4	4	4	FC	PP01068	
	1	1	1	1	1	1	2	2	2	FC	PP01096	
	1	1	1				2	2	2	FC	FR10844	
	1	1	1	3	3	3	2	2	2	FC	FR10845	
	1	1	1				2	2	2	FC	FR10846	
	1	1	1	3	3	3	2	2	2	FC	FR10847	
Fan Power Supply												
							1	1	1	FC	VB00299	
Rectifying Boards												
	1	1	1	2	2	2	2	2	2	FC	VB00460	

Notes

(1) Rectifying board not included.
(2) See Page V6-T2-100 for details.
(3) PP00060 capacitor not included in main fan; please order separately.

Adjustable Frequency Drives

SPX9000 Drives

Technical Data and Specifications

SPX9000 Drives

Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	+10\%/-15\%
Input frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to 45-66 Hz)
Connection to power	Once per minute or less (typical operation)
High withstand rating	100 kAIC
Output Ratings	
Output voltage	0 to $V_{\text {in }}$
Continuous output current	I_{H} rated 100% at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, FR 9 and below L_{L} rated 100% at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, $\mathrm{FR9}$ and below $\mathrm{I}_{\mathrm{H}} / \mathrm{I}_{\mathrm{L}} 100 \%$ at $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, FR10 and above
Overload current ($\left.\mathrm{I}_{\mathrm{H}} / \mathrm{L}_{\mathrm{L}}\right)$	150\% $\mathrm{I}_{\mathrm{H}}, 110 \% \mathrm{I}_{\mathrm{L}}$ for 1 min .
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Initial output current (IH_{H})	250\% for 2 seconds
Control Characteristics	
Control method	Frequency control (V/f) Open loop: sensorless vector control Closed loop: frequency control Closed loop: vector control
Switching frequency	Adjustable with parameter 2.6.9
Frame 4-6	1 to 16 kHz ; default 10 kHz
Frame 7-12	1 to 10 kHz ; default 3.6 kHz
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy $\pm 1 \% \mathrm{~V} / \mathrm{Hz}$ Panel reference: Resolution 0.01 Hz
Field weakening point	30 to 320 Hz
Acceleration time	0 to 3000 sec .
Deceleration time	0 to 3000 sec .
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)
Ambient Conditions	
Ambient operating temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right) \mathrm{I}_{H}$ (FR4-FR9) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right) \mathrm{L}_{\mathrm{L}}(\mathrm{FR} 10$ and up) $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right) \mathrm{L}_{\mathrm{L}}$ (all frames)
Storage temperature	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative humidity	0 to 95% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2; Mechanical particles: IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft}(1000 \mathrm{~m})$; 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above 3280 ft (1000 m); max. $9842 \mathrm{ft}(3000 \mathrm{~m})$
Vibration	EN 50178, EN 60068-2-6; 5 to 50 Hz , displacement amplitude 1 mm (peak) at 3 to 15.8 Hz , max. acceleration amplitude 1 G at 15.8 to 150 Hz
Shock	EN 50178, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure class	NEMA 1/IP21 or NEMA 12/IP54, open chassis/IP20

Description	Specification
Control Connections	
Analog input voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200$ kohms (-10 to 10 V joystick control) resolution 0.1%; accuracy $\pm 1 \%$
Analog input current	$0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{i}}-250$ ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	$+24 \mathrm{~V} \pm 15 \%$, max. 250 mA
Output reference voltage	$+10 \mathrm{~V}+3 \%$, max. load 10 mA
Analog output	$0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}$ max. 500 ohms; resolution 10 bit; Accuracy $\pm 2 \%$
Digital outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay outputs	2 programmable Form C relay outputs switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}, 125 \mathrm{Vdc} / 0.4 \mathrm{~A}$
Protections	
Overcurrent protection	Trip limit $4.0 \times \mathrm{I}_{H}$ instantaneously
Overvoltage protection	Yes
Undervoltage protection	Yes
Earth fault protection	In case of earth fault in motor or motor cable, only the frequency converter is protected
Input phase supervision	Trips if any of the input phases are missing
Motor phase supervision	Trips if any of the output phases are missing
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes (+24V and +10 V reference voltages)
High Performance Features	
Speed error	$<0.01 \%$, depending on the encoder
Encoder support	Incremental or absolute
Encoder voltages	5 V (RS-422), 15V or 24 V , depending on the option card
Torque control	Full torque control at all speeds, including zero
Torque accuracy	$<2 \%$; <5\% down to zero speed
Starting torque	>200\%, depending on motor and drive sizing
Master/slave configurations	Full capability
System analysis	Integrated data logger
PC communication	Fast multiple drive monitoring with PC
Inter-drive communication	High-speed bus (12 Mbits/s)
High-speed applications	Up to 7200 Hz

Dimensions

Approximate Dimensions in Inches (mm)

9000X Drives

NEMA Type 1/IP21 and NEMA Type 12/IP54, FR4, FR5 and FR6

Voltage	$\mathrm{hp}\left(\mathrm{I}_{\mathrm{H}}\right)$	H1	H2	H3	D1	D2	D3	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs (kg)	Knockouts at Inches (mm) N1 (0.D.)
FR4													
230 V	3/4-3	$\begin{gathered} \hline 12.9 \\ -(327) \end{gathered}$	$\begin{aligned} & 12.3 \\ & (313) \end{aligned}$	$\begin{aligned} & 11.5 \\ & (292) \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & (190) \end{aligned}$	$\begin{aligned} & 3.0 \\ & \text { (77) } \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & (126) \end{aligned}$	$\begin{aligned} & 5.04 \\ & (128) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & 0.5 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.3 \\ & (7) \end{aligned}$	11.0 (5)	3 at 10.1 (28)
480 V	1-5												
FR5													
230 V	5-7-1/2	$\begin{array}{r} \hline 16.5 \\ -(419) \end{array}$	$\begin{aligned} & 16.0 \\ & (406) \end{aligned}$	$\begin{aligned} & 15.3 \\ & (389) \end{aligned}$	$\begin{aligned} & 8.4 \\ & (214) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & 5.7 \\ & (144) \end{aligned}$	$\begin{aligned} & 3.9 \\ & (100) \end{aligned}$	$\begin{aligned} & \hline 0.5 \\ & \text { (13) } \end{aligned}$	$\begin{aligned} & 0.3 \\ & \text { (7) } \end{aligned}$	17.9 (8)	$\begin{aligned} & 2 \text { at } 1.5(37) \\ & 1 \text { at } 10.1(28) \end{aligned}$
480 V	7-1/2-15												
FR6													
230 V	10-15	$\begin{aligned} & 22.0 \\ & \text { (558) } \end{aligned}$	$\begin{aligned} & \hline 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 20.4 \\ & (519) \end{aligned}$	$\begin{aligned} & \hline 9.3 \\ & (237) \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & (105) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (165) \end{aligned}$	$\begin{aligned} & \hline 7.7 \\ & (195) \end{aligned}$	$\begin{aligned} & \hline 5.8 \\ & (148) \end{aligned}$	$\begin{aligned} & \hline 0.6 \\ & (15.5) \end{aligned}$	$\begin{aligned} & 0.4 \\ & \text { (9) } \end{aligned}$	40.8 (19)	3 at 1.5 (37)
480 V	20-30												
575 V	2-25												

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54 with Flange Kit, FR4, FR5 and FR6

FR4, FR5 and FR6 with Flange Kit

W1	W2	H1	H2	H3	H4	H5	D1	D2	Dia. A
FR4									
$5.0(128)$	$4.5(113)$	$13.3(337)$	$12.8(325)$	$12.9(327)$	$1.2(30)$	$0.9(22)$	$7.5(190)$	$3.0(77)$	$0.3(7)$

FR5									
$5.6(143)$	$4.7(120)$	$17.0(434)$	$16.5(420)$	$16.5(419)$	$1.4(36)$	$0.7(18)$	$8.4(214)$	$3.9(100)$	$0.3(7)$

FR6									
$7.7(195)$	$6.7(170)$	$22.0(560)$	$21.6(549)$	$22.0(558)$	$1.2(30)$	$0.8(20)$	$9.3(237)$	$4.2(106)$	$0.3(7)$

Flange Opening, FR4 to FR6

W3	W4	W5	H6	H7	H8	H9	Dia. B
FR4							
$4.8(123)$	$4.5(113)$	-	$12.4(315)$	$12.8(325)$	-	$0.2(5)$	$0.3(7)$
FR5							
$5.3(135)$	$4.7(120)$	-	$16.2(410)$	$16.5(420)$	-	$0.2(5)$	$0.3(7)$
FR6							
$7.3(185)$	$6.7(170)$	$6.2(157)$	$21.2(539)$	$21.6(549)$	$0.3(7)$	$0.2(5)$	$0.3(7)$

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR7

Voltage	hp (I_{H})	H1	H2	H3	D1	D2	D3	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs (kg)	Knockouts at Inches (mm) N1 (O.D.)
230 V	20-30	24.8 (630)	24.2 (614)	23.2 (590)	10.1 (257)	3.0 (77)	7.3 (184)	9.3 (237)	7.5 (190)	0.7 (18)	0.4 (9)	77.2 (35)	3 at 1.5 (37)
480 V	40-60												
575 V	30-40												

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR8

Voltage	hp (I_{H})	D1	H1	H2	H3	W1	W2	R1 Dia.	R2 Dia.	Weight Lbs (kg)
230 V	40-60	13.5 (344)	300.1 (764)	28.8 (732)	28.4 (721)	11.5 (291)	10 (255)	0.7 (18)	0.4 (9)	127 (58)
480 V	75-125									
575 V	50-75									

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, with Flange Kit, FR7 and FR8

| W1 | W2 | W3 | W4 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | D1 | D2 | Dia. A | |
| :--- |
| FR7 | | | | | | | | | | | | | | |
| $9.3(237)$ | $6.8(175)$ | $10.6(270)$ | $10.0(253)$ | $25.6(652)$ | $24.9(632)$ | $24.8(630)$ | $7.4(189)$ | $7.4(189)$ | $0.9(23)$ | $0.8(20)$ | $10.1(257)$ | $4.6(117)$ | $0.3(6)$ | |
| FR8 | | | | | | | | | | | | | | |
| $11.2(285)$ | - | $14.0(355)$ | $13.0(330)$ | $32.8(832)$ | - | $29.3(745)$ | $10.2(258)$ | $10.4(265)$ | $1.7(43)$ | $2.2(57)$ | $13.5(344)$ | $4.3(110)$ | $0.4(9)$ | |

Flange Opening, FR7 and FR8

W5	W6	W7	H8	H9	H10	H11	H12	H13	Dia. B
FR7									
$9.2(233)$	$6.9(175)$	$10.0(253)$	$24.4(619)$	$7.4(189)$	$7.4(189)$	$1.4(35)$	$1.3(32)$	$1.0(25)$	$0.3(6)$
FR8									
$11.9(301)$	-	$13.0(330)$	$31.9(810)$	$10.2(258)$	$10.4(265)$	-	-	$1.3(33)$	$0.4(9)$

Adjustable Frequency Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9

Voltage	$\mathbf{h p}\left(\mathbf{I}_{\mathbf{H}}\right)$	$\mathbf{H 1}$	H2	H3	D1	D2	W1	W2	R1 Dia.	R2 Dia.
230 V	$75-100$	$45.3(1150)$	$44.1(1120)$	$42.4(1076)$	$13.4(340)$	$14.3(362)$	$18.9(480)$	$15.7(400)$	$0.8(20)$	$0.4(9)$
480 V	$150-200$									
575 V	$100-175$									

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9, continued

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6 (1)	D1	D2	D3
$18.9(480)$	$15.7(400)$	$6.5(165)$	$0.4(9)$	$2.1(54)$	$45.3(1150)$	$44.1(1120)$	$28.3(721)$	$8.0(205)$	$0.6(16)$	$7.4(188)$	$14.2(361.5)$	$13.4(340)$	$11.2(285)$

Note
(1) Brake resistor terminal box (H6) included when brake chopper ordered.

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR9 with Flange Kit

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3
$20.9(530)$	$20.0(510)$	$19.1(485)$	$7.9(200)$	$0.2(5.5)$	$51.7(1312)$	$45.3(1150)$	$16.5(420)$	$3.9(100)$	$1.4(35)$	$0.4(9)$	$0.1(2)$	$24.9(362)$	$13.4(340)$	$4.3(109)$

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21 and NEMA Type 12/IP54, FR10 Freestanding

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)
FR10 Open Chassis ©

Voltage	hp (l_{H})	W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	H6	H7	D1	D2	D3	D4	Weight Lbs (kg)
480 V	250-350	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 16.7 \\ & (425) \end{aligned}$	$\begin{aligned} & 1.2 \\ & (30) \end{aligned}$	$\begin{aligned} & 2.6 \\ & (67) \end{aligned}$	$\begin{aligned} & 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & 45.9 \\ & (1165) \end{aligned}$	$\begin{aligned} & 44.1 \\ & (1121) \end{aligned}$	$\begin{aligned} & 34.6 \\ & (879) \end{aligned}$	$\begin{aligned} & 33.5 \\ & (850) \end{aligned}$	$\begin{aligned} & 0.7 \\ & \text { (17) } \end{aligned}$	$\begin{aligned} & 24.7 \\ & \text { (627) } \end{aligned}$	$\begin{aligned} & 10.8 \\ & (275) \end{aligned}$	$\begin{aligned} & 19.9 \\ & (506) \end{aligned}$	$\begin{aligned} & 17.9 \\ & (455) \end{aligned}$	$\begin{aligned} & 16.7 \\ & (423) \end{aligned}$	$\begin{aligned} & 16.6 \\ & (421) \end{aligned}$	$\begin{aligned} & 518 \\ & (235) \end{aligned}$
575 V	200-300																	

Note
(1) SPX9000X FR12 is built of two FR10 modules. Please refer to SPX9000 installation manual for mounting instructions.

Approximate Dimensions in Inches (mm)
NEMA Type 1/IP21, FR11 Freestanding Drive

Voltage	$\begin{aligned} & \text { hp } \\ & \left(I_{H}\right) \end{aligned}$	W1	W2	W3	W4	W5	W6	W7	W8	H1	H2	H3	D1	D2	D3	D4	D5	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
480 V	400-550	$\begin{array}{r} 31.26 \\ -(794) \end{array}$	$\begin{aligned} & 2.40 \\ & (61) \end{aligned}$	$\begin{aligned} & 6.50 \\ & (165) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & 3.43 \\ & (87) \end{aligned}$	$\begin{aligned} & 2.95 \\ & (75) \end{aligned}$	$\begin{aligned} & 2.52 \\ & (64) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{aligned} & 79.45 \\ & (2018) \end{aligned}$	$\begin{aligned} & 74.80 \\ & (1900) \end{aligned}$	$\begin{aligned} & 20.18 \\ & (512.5) \end{aligned}$	$\begin{aligned} & 23.70 \\ & (602) \end{aligned}$	$\begin{aligned} & 11.22 \\ & (285) \end{aligned}$	$\begin{aligned} & 19.09 \\ & (485) \end{aligned}$	$\begin{aligned} & 0.47 \\ & (12) \end{aligned}$	$\begin{aligned} & 17.60 \\ & (447) \end{aligned}$	$\begin{aligned} & 0.83 \\ & (21) \end{aligned}$	$\begin{aligned} & 1.89 \\ & (48) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.43 \\ & (9 \times 11) \end{aligned}$	$\begin{aligned} & 526 \\ & (239) \end{aligned}$
690 V	400-500																				

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)
FR11 Open Chassis

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Inverter

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	Dia. 1	Dia. 2	Dia. 3	Dia. 4	Weight Lbs (kg)
$\begin{aligned} & 27.87 \\ & (708) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 26.65 \\ & (677) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.79 \\ & (20) \end{aligned}$	$\begin{aligned} & 21.77 \\ & (553) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (16) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 9.64 \\ & (244.8) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (9.5) \end{aligned}$	683 (310)

Notes

9000X FR14 is built of two FR13 modules. Please refer to SPX9000 installation manual for mounting instructions.
FR13 is built from an inverter module and a converter module. Please refer to SPX9000 installation manual for mounting instructions.

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Converter

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Weight Lbs (kg)
$\begin{aligned} & 18.74 \\ & (476) \end{aligned}$	$\begin{aligned} & \hline 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 17.52 \\ & (445) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 14.69 \\ & (373) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (18.5) \end{aligned}$	$\begin{aligned} & \hline 6.42 \\ & (163) \end{aligned}$	$\begin{aligned} & 2.56 \\ & (65) \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & \hline 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & \hline 5.24 \\ & (133) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (9.5) \end{aligned}$	295 (134)

Number of Input Units

480V Catalog Number	hp	Input Modules	690 V Catalog Number	hp	Input Modules
SPX800A0-4A2N1	800	2	SPX800A0-5A2N1	800	2
			SPX900AO-5A2N1	900	2
			SPXH10A0-5A2N1	1000	2

Approximate Dimensions in Inches (mm)
FR13, Open Chassis Converter-900/1000 hp 480V

W1	W2	W3	W4	W5	H1	H2	H3	H4	H5	D1	D2	D3	D4	D5	D6	D7	D8	D9	Dia. 1	Dia. 2	Dia. 3	Dia. 4	Weight Lbs (kg)
$\begin{aligned} & 27.87 \\ & (708) \end{aligned}$	$\begin{aligned} & \hline 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 26.65 \\ & (677) \end{aligned}$	$\begin{aligned} & 4.57 \\ & (116) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (85) \end{aligned}$	$\begin{aligned} & 41.54 \\ & (1055) \end{aligned}$	$\begin{aligned} & \hline 2.46 \\ & (62.5) \end{aligned}$	$\begin{aligned} & \hline 39.86 \\ & (1012.5) \end{aligned}$	$\begin{aligned} & 41.34 \\ & (1050) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (17.5) \end{aligned}$	$\begin{aligned} & 14.69 \\ & (373) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (18.5) \end{aligned}$	$\begin{aligned} & 6.42 \\ & (163) \end{aligned}$	$\begin{aligned} & 2.56 \\ & \text { (65) } \end{aligned}$	$\begin{aligned} & 1.06 \\ & (27) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 5.91 \\ & (150) \end{aligned}$	$\begin{aligned} & 5.24 \\ & (133) \end{aligned}$	$\begin{aligned} & 0.35 \times 0.59 \\ & (9 \times 15) \end{aligned}$	$\begin{aligned} & 0.18 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 0.51 \\ & (13) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (9.5) \end{aligned}$	443 (201)

Number of Input Units

480V Catalog Number	hp	Input Modules
SPX900A0-4A2N1	900	3
SPXH10A0-4A2N1	1000	3

Adjustable Frequency Drives
SPX9000 Drives

Approximate Dimensions in Inches (mm)

AC Choke Dimensions

Choke Types

Catalog Number	Frame Size	Choke Type ${ }^{(1)}$	Catalog Number	Frame Size	Choke Type ${ }^{(1)}$
Voltage Range 380-500V			Voltage Range 525-690V		
SPX 2504	FR10	CHK0400	SPX 2005	FR10	CHK0261
SPX 3004		CHK0520	SPX 2505		CHK0400
SPX 3504		CHK0520	SPX 3005		CHK0400
SPX 4004	FR11	$2 \times$ CHK0400	SPX 4005	FR11	CHK0520
SPX 5004		$2 \times$ CHK0400	SPX 4505		CHK0520
SPX 5504		$2 \times$ CHK0400	SPX 5005		$2 \times$ CHK0400
SPX 6004	FR12	$2 \times$ CHK0520	SPX 5505	FR12	$2 \times$ CHK0400
SPX 6504		$2 \times$ CHK0520	SPX 6005		$2 \times$ CHK0400
SPX 7004		$2 \times \mathrm{CHK052O}$	SPX 7005		$2 \times$ CHK0400
SPX 8004	FR13	$2 \times$ CHK0400	SPX 8005	FR13	$2 \times$ CHK0400
SPX 9004		$3 \times$ CHK0520	SPX 9005		$2 \times$ CHK0400
SPX H10 4		$3 \times$ CHK0520	SPX H10 5		$2 \times$ CHK0400
SPX H12 4	FR14	$4 \times$ CHK0520	SPX H13 5	FR14	$4 \times$ CHK0400
SPX H16 4		$6 \times$ CHK0400	SPX H15 5		$6 \times$ CHK0400

CHK0520

Note
(1) Chokes are provided with all FR10-FR14 drives.

Approximate Dimensions in Inches (mm)

СНК0400

CHK0261

Product Overview

H-Max Family Introduction

Eaton's H-Max ${ }^{\text {M }}$ Series VFD is the next generation of drives specifically engineered for HVAC pump and fluid control applications. The H-Max family of products boasts industry leading energy efficiency algorithms for your applications. Not only are the drives ultra-efficientthey contain software that minimizes motor winding energy loses in your applications. Designed for easy installation, simple startup, and long life; the H-Max Series drive family provides exceptional value to our customers,

Product Range

Open Style Drives:

- 0.75-125 hp at 230 Vac
- $1.5-250 \mathrm{hp}$ at 480 Vac

Note: Available in NEMA 1 or NEMA 12 designs.

IntelliPass/IntelliDisconnect Drives:

- $1-30$ hp at 208 Vac
- $1-30$ hp at 230 Vac
- $1-75$ hp at 480 Vac

Note: Available in NEMA 1, NEMA 12, or NEMA 3R enclosures.

Contents

Description	Page
H-Max Series Drives	
H-Max Drives .	V6-T2-139
H-Max IntelliPass and	
IntelliDisconnect Drives	V6-T2-149

Application Description

The H-Max Series drive was designed specifically for HVAC pump and fluid control applications. It is intended to be used on variable torque loads with the intent of moving air or liquids. With this in mind, the H-Max drive has onboard I/O pre-programmed to meet the common needs for these applications. The H-Max drive supports items such as standard speed control, PID functionality, as well as multi-motor applications. The drive easily supports interlock, second motor parameter set, as well as fire mode functionality.

Key Feature

Active Energy Control Algorithm
Eaton's H-Max Series drives have been designed to provide industry leading energy saving solutions. Not only is the drive ultra-efficient, the drive seeks the most efficient operating point of the motor, minimizing energy loss in the windings per the given load requirements. This is an Eaton protected control algorithm exclusive to H-Max drives.

H-Max Drives

H-Max Drives

Product Description

Eaton's H-Max Series VFD has software and hardware designed specifically for the HVAC, pump industry. The ultra-efficient DC capacitor and power structure allows the drive to consume less energy, lowering greenhouse gases.
The I/O configuration is designed with wiring ergonomics in mind by including removable terminal blocks. The main, easily removable, control board used for all drive frames with six digital IN, two analog IN, one analog OUT, three relay OUT accepts two additional I/O or communication board. In addition, the control board has built-in RS-485 and Ethernet communication.

These drives continue the tradition of robust performance, and raise the bar on features and functionality, ensuring the best solution at the right price.
In addition to the Active Energy Control Algorithm to maximize motor efficiency, the drive boasts an ultraefficient DC capacitor and power structure to allow less energy consumption, lowering greenhouse gases.

Features and Benefits

 Hardware- Thin metal capacitor design-ultra-efficient drive operation and extended self life (up to five years without reforming)
- Integrated 5\% DC link choke with Input surge protection—protects against voltage spikes and provides a clean wave form to the motor
- EMI/RFI filters standard on all drives-meets EMC Category 2 for commercial applications
- Real-time clock—supports calendaring and PLC functionality
- Graphic LCD display and keypad-supports simple menu navigation as well as on-screen diagnostics and troubleshooting
- HAND-OFF-AUTO and drive-bypass selector on keypad-simplifies control
- Standard I/O: 6DI, 2AI, 1AO, 2 Form C RO (NO/ NC), 1 Form A RO (NO)supports requirements for most installations

Contents

- Onboard RS 485: Modbus, N2, BACnet-meets needs of most communication requirements
- Onboard Ethernet: BACnet/ IP, Modbus/TCP—meets needs of most communication requirements
- Two expansion slotsintended to support additional I/O or communication protocols as necessary
- Quick disconnect terminals for I/O connectionssupports fast easy installation

Software

- Active energy controlminimizes energy losses in your motor resulting in industry leading energy efficiency for your application
- Quick Start Wizard upon initial power up-supports fast easy installation
- Copy/paste functionality on drive keypad-allows for fast setup of multiple drives
- Pre-programmed I/Osupports fast easy installation for most applications

Standards and Certifications Product

- IEC 61800-5-1
- CE
- cUL

Safety

- UL 508C
- EN 61800-5-1
- CE
- cUL

- C-Tick Mark

C

Adjustable Frequency Drives

H-Max Series Drives

Catalog Number Selection

H-Max Series Drives

Notes
All boards are varnished (conformed coated). Corrosion resistant.
Battery included in all drives for real-time clock.
Keypad kit includes HOA bypass.
Keypad kit includes HOA, back reset for Europe application
EMI/RFI filters included.
DC link choke included.

Product Selection

H-Max Series Drives-230 Vac

NEMA Type 1/IP21

FS Frame Size	Drive Output Current Low Overload Full Load Amps at $40^{\circ} \mathrm{C}$	Horsepower	Assigned Motor Ratings			
			Drive kW $230 \mathrm{Vac} / 50 \mathrm{~Hz}$	230 Vac NEC Amps	Low Overload Full Load Amps at $50^{\circ} \mathrm{C}$	Catalog Number
4	3.7	0.75	0.55	3.2	2.6	HMX32AG3D721-N
	4.8	1	0.75	4.2	3.7	HMX32AG4D821-N
	6.6	1.5	1.1	6.6	4.8	HMX32AG6D621-N
	8	2	1.5	6.8	6.6	HMX32AG8D021-N
	11	3	2.2	9.6	8	HMX32AG61121-N
	12.5	4	3	N/A	11	HMX32AG01221-N
5	18	5	4	15.2	12.5	HMX32AG01821-N
	24	7.5	5.5	22	18	HMX32AG02421-N
	31	10	7.5	28	24	HMX32AG03121-N
6	48	15	11	42	31	HMX32AG04821-N
	62	20	15	54	48	HMX32AG06221-N
7	75	25	18.5	68	62	HMX32AG07521-N
	88	30	22	80	75	HMX32AG08821-N
	105	40	30	104	88	HMX32AG10521-N
8	140	50	37	130	105	HMX32AG14021-N
	170	60	45	154	140	HMX32AG17021-N
	205	75	55	192	170	HMX32AG20521-N
9	261	100	75	248	205	HMX32AG26121-N
	310	125	90	N/A	261	HMX32AG31021-N

NEMA Type 12/IP54

FS Frame Size	Drive Output Current		Assigned Motor Ratings			
	Low Overload Full Load Amps at $40^{\circ} \mathrm{C}$	Horsepower	Drive kW $230 \mathrm{Vac} / 50 \mathrm{~Hz}$	230 Vac NEC Amps	Low Overload Full Load Amps at $50^{\circ} \mathrm{C}$	Catalog Number
4	3.7	0.75	0.55	3.2	2.6	HMX32AG3D722-N
	4.8	1	0.75	4.2	3.7	HMX32AG4D822-N
	6.6	1.5	1.1	6.6	4.8	HMX32AG6D622-N
	8	2	1.5	6.8	6.6	HMX32AG8D022-N
	11	3	2.2	9.6	8	HMX32AG01122-N
	12.5	4	3	N/A	11	HMX32AG01222-N
5	18	5	4	15.2	12	HMX32AG01822-N
	24	7.5	5.5	22	18	HMX32AG02422-N
	31	10	7.5	28	24	HMX32AG03122-N
6	48	15	11	42	31	HMX32AG04822-N
	62	20	15	54	48	HMX32AG06222-N
7	75	25	18.5	68	62	HMX32AG07522-N
	88	30	22	80	75	HMX32AG08822-N
	105	40	30	104	88	HMX32AG10522-N
8	140	50	37	130	105	HMX32AG14022-N
	170	60	45	154	140	HMX32AG17022-N
	205	75	55	192	170	HMX32AG20522-N
9	261	100	75	248	205	HMX32AG26122-N
	310	125	90	N/A	261	HMX32AG31022-N

Note

(1) For sizing reference

H-Max Series Drives-480 Vac

NEMA Type 1

NEMA Type 1/IP21

FS Frame Size	Drive Output Current Low Overload Full Load Amps at $40^{\circ} \mathrm{C}$	Horsepower	Assigned Motor Ratings		Low Overload Full Load Amps at $50^{\circ} \mathrm{C}$	Catalog Number
			Drive kW $400 \mathrm{Vac} / 50 \mathrm{~Hz}$	480 Vac NEC Amps ${ }^{\text {¹ }}$		
4	3.4	1.5	1.1	2.1	2.6	HMX34AG3D421-N
	4.8	2	1.5	3.4	3.4	HMX34AG4D821-N
	5.6	3	2.2	5.6	4.8	HMX34AG5D621-N
	8.0	4	3.0	N/A	5.6	HMX34AG8D021-N
	9.6	5	4	7.6	8	HMX34AG9D621-N
	12	7.5	5.5	11	9.6	HMX34AG01221-N
5	16	10	7.5	14	12	HMX34AG01621-N
	23	15	11	21	16	HMX34AG02321-N
	31	20	15	27	23	HMX34AG03121-N
6	38	25	18.5	34	31	HMX34AG03821-N
	46	30	22	40	38	HMX34AG04621-N
	61	40	30	52	46	HMX34AG06121-N
7	72	50	37	65	61	HMX34AG07221-N
	87	60	45	77	72	HMX34AG08721-N
	105	75	55	96	87	HMX34AG10521-N
8	140	100	75	124	105	HMX34AG14021-N
	170	125	90	156	140	HMX34AG17021-N
	205	150	110	180	170	HMX34AG20521-N
9	261	200	132	240	205	HMX34AG26121-N
	310	250	160	302	261	HMX34AG31021-N

NEMA Type 12/IP54

FS Frame Size	Drive Output Current Low Overload Full Load Amps at $40^{\circ} \mathrm{C}$	Horsepower	Assigned Motor Ratings		Low Overload Full Load Amps at $50^{\circ} \mathrm{C}$	Catalog Number
			Drive kW $400 \mathrm{Vac} / 50 \mathrm{~Hz}$	480 Vac NEC Amps		
4	3.4	1.5	1.1	2.1	2.6	HMX34AG3D422-N
	4.8	2	1.5	3.4	3.4	HMX34AG4D822-N
	5.6	3	2.2	5.6	4.8	HMX34AG5D622-N
	8.0	4	3.0	N/A	5.6	HMX34AG8D022-N
	9.6	5	4	7.6	8	HMX34AG9D622-N
	12	7.5	5.5	11	9.6	HMX34AG01222-N
5	16	10	7.5	14	12	HMX34AG01622-N
	23	15	11	21	16	HMX34AG02322-N
	31	20	15	27	23	HMX34AG03122-N
6	38	25	18.5	34	31	HMX34AG03822-N
	46	30	22	40	38	HMX34AG04622-N
	61	40	30	52	46	HMX34AG06122-N
7	72	50	37	65	61	HMX34AG07222-N
	87	60	45	77	72	HMX34AG08722-N
	105	75	55	96	87	HMX34AG10522-N
8	140	100	75	124	105	HMX34AG14022-N
	170	125	90	156	140	HMX34AG17022-N
	205	150	110	180	170	HMX34AG20522-N
9	261	200	132	240	205	HMX34AG26122-N
	310	250	160	302	261	HMX34AG31022-N

Note

(1) For sizing reference.

Onboard Network Communications

Johnson Controls

Metasys N2

H-Max Series provides communication between the drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. N2 can be selected and programmed by the drive keypad.

BACnet

H-Max Series provides communication to BACnet networks. Data transfer is master-slave/token passing (MS/TP) RS-485.

BACnet IP

100 base T interface.
Modbus TCP
Ethernet based protocol.

Modbus RTU

H-Max Series provides communication to Modbus RTU RS-485 as a slave on a Modbus network. Other communication parameters include an address range from 1-247; a parity of None, Odd or Even; and the stop bit is 1 .

H-Max Series Option Board Kits Available for Slot B

The factory issued relay option board can be replaced with the following option
boards to customize the drive for your application needs.

The standard board provides 2 Form C RO (NO/NC) and 1 Form A RO (NO).

Option Boards Mounted in Slot B

Option Kit Description	Option Kit Catalog Number
$/ 0$ expander card, 2 RO and thermistor input	Relay Board 2

H-Max Series Option Board Kits Available for Slots D and E

The H-Max Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your
application needs. The drive's control unit is designed to accept a total of two option boards.

The H-Max Series factoryinstalled standard board configuration includes an I/O board and a relay output board.

Option Boards Mounted in Slots D and E

Option Kit Description	Option Kit Catalog Number
$6 \times \mathrm{DI} / \mathrm{DO}$, each digital input can be individually programmed as digital output	XMX-I0-B1-A
1 RO Form C (NO/NC), 1 RO Form A (NO), 1 thermistor	XMX-IO-B2-A
$1 \times \mathrm{Al}, 2 \times \mathrm{AO}$ (isolated)	XMX-IO-B4-A
$3 \times$ RO Form A (NO)	XMX-IO-B5-A
1 RO Form A (NO), 5DI 42-240 Vac input	XMX-I0-B9-A
$1 \times$ A0, 1 x DO, $1 \times \mathrm{RO}$	XMX-IO-BF-A
LonWorks ${ }^{\text {® }}$	XMX-COM-C4-A

NEMA Type 1 to NEMA Type 12/IP54 Conversion Kit

The NEMA Type 12/IP54 Kit consists of a drive cover, option kit is used to convert a fan kit and plugs.
NEMA Type 1 to a NEMA
Type 12 drive.
NEMA Type 12/IP54 Cover

Option Kit Description	Option Kit Catalog Number
FS4-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS4-N12KIT
FS5-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS5-N12KIT
FS6-branded N12/IP54 cover with gasket, plastic plug, fans, Eaton logos	FS6-N12KIT

Adjustable Frequency Drives
H-Max Series Drives

Accessories

Flange Kits

The flange kit is used when the power section heat sink is mounted through the back panel of an enclosure.

Flange Kit NEMA Type 1/IP21

Includes flange, mounting brackets, and screws.

Flange Kit NEMA Type 12/IP54

Includes flange, mounting components, air shroud brackets, NEMA Type 12 fan screws and plugs.

Frames FS4-FS9 (1)

Description	Catalog Number
NEMA Type 12/IP54	FS4-Flange-N12KIT
FS4 N12/IP54 flange kit (mounting N1 drive into N12 enclosure)	FS5-Flange-N12KIT
FS5 N12/IP54 flange kit (mounting N1 drive into N12 enclosure)	FS6-Flange-N12KIT
FS6 N12/IP54 flange kit (mounting N1 drive into N12 enclosure)	FS7-Flange-N12KIT
FS7 N12/IP54 flange kit (mounting N1 drive into N12 enclosure)	

Keypad Accessories

Remote Mounting Keypad Kit

Frames FS4-FS9

Description	Catalog Number
Remote mounting keypad kit—bezel and cable	OPTRMT-BP-HMAX

Drive Demo
H-Max Series Drive Demo
Demos and Power Supply

Description	Catalog Number
H-Max Series drive demo	H-MAX-DEMO
H-Max Series bypass demo	H-MAX-BYPASS-DEMO
Hand-held 24V auxiliary power supply-used to supply power	9000XAUX24V
to the control module in order to perform keypad programming	
before the drive is connected to line voltage	
Notes	
(1) For installation of a NEMA Type 1 drive into a NEMA Type 12 oversized enclosure.	
(2) Frame size 8 and 9 must be ordered from the factory as a flange mount unit.	

Replacement Parts

Control Board/Keypad

Description	Current Catalog Number
H-Max Series graphic bypass, HOA	KeypadbypassH0A
H-Max Series graphic back, HOA	KeypadbackH0A
PC Cable	Catalog Number
Description	REM-USB-Down
Remote download USB to RJ-45 cable with software driver disk	
Replacement Relay Board in Slot B	Catalog
Number	
Description	Relay board 1
Replacement relay boardqty Form C relay, qy 1 Form A relay	

Main Fan

Description	Catalog Number
FS4 main fan	FS4-Main Fan
FS5 main fan	FS5-Main Fan
FS6 main fan	FS6-Main Fan
FS7 main fan	FS7-Main Fan

Internal Fan

Description	Catalog Number
FS4 internal fan (IP54/NEMA 12)	FS4-Internal Fan
FS5 internal fan (IP54/NEMA 12)	FS5-Internal Fan
FS6 internal fan (IP54/NEMA 12)	FS6-Internal Fan
FS7 internal fan (IP54/NEMA 12)	FS7-Internal Fan

Adjustable Frequency Drives

H-Max Series Drives

Technical Data and Specifications

H-Max Series Drives

Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	200-240 Vac, 380-480 Vac, -10\%/+10\%
Input frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to 47-66 Hz)
Connection to power	Once per minute or less (typical operation)
Short circuit withstand rating	100 kAIC
Output Ratings	
Output voltage	0 to $\mathrm{V}_{\text {in }} / \mathrm{U}_{\text {in }}$ line voltage in
Continuous output current	Ambient temperature max. $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$
L overload	$1.1 \times \mathrm{L}$ (1 min./10 min.)
Overload current	110\% (1 min./10 min.)
Initial output current	150\% for two seconds
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Control Characteristics	
Control method	Frequency control (V/f) open loop sensorless vector control
Switching frequency	$\begin{aligned} & 1-310 \text { amps } \\ & \text { FS4-9: default } 6 \mathrm{kHz} \end{aligned}$
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy $\pm 1 \%$ Panel reference: Resolution 0.01 Hz
Field weakening point	8 to 320 Hz
Acceleration time	0.1 to 3000 seconds
Deceleration time	0.1 to 3000 seconds
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$
Ambient Conditions	
Ambient operating temperature	FS4-FS9: $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ (Drive can operate at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, see Pages V6-T2-141 and V6-T2-142)
Storage temperature	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative humidity	0 to 95\% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 60721-3-3, unit in operation, Class 3C2; Mechanical particles: IEC 60721-3-3, unit in operation, Class 3S2
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft}(1000 \mathrm{~m})$; 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above $3280 \mathrm{ft}(1000 \mathrm{~m})$; max. $9842 \mathrm{ft}(3000 \mathrm{~m}) ; 380-480 \mathrm{~V}$
Vibration	FS4-FS9: EN 61800-5-1, EN 60068-2-6; 5 to 150 Hz, displacement amplitude 1 mm (peak) at 5 to 15.8 Hz , max. acceleration amplitude 1 G at 15.8 to 150 Hz
Shock	EN 61800-5-1, EN 60068-2-27 UPS Drop test (for applicable UPS weights) Storage and shipping: max. 15G, 11 ms (in package)
Enclosure class	NEMA Type 1/IP21 or NEMA Type 12/IP54 (keypad required for IP54/Type 12)
Standards	
EMC	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H (EMC C2)
Emissions	EMC level dependent+EMC 2: EN61800-3 (2004) Category C2 Delivered with Class C2 EMC filtering as default.

Description	Specification
Control Connections	
Analog input voltage	0 to $10 \mathrm{~V}, \mathrm{R}=200$ kohms differential Resolution 0.1\%; Accuracy $\pm 1 \%$ Dip switch selection (voltage/current)
Analog input current	O(4) to $20 \mathrm{~mA} ; \mathrm{B}_{\mathrm{i}}-250$ ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	$+24 \mathrm{~V} \pm 10 \%$, max. 250 mA
Output reference voltage	+10V $+3 \%$, max. load 10 mA
Analog output	$0-10 \mathrm{~V}$, 0 (4) to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}$ max. 500 ohms; Resolution 10 bit; Accuracy $\pm 2 \%$ Dip switch selection (voltage/current)
Relay outputs	3 programmable, 2 Form C, 1 Form A relay outputs Switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}, 125 \mathrm{Vdc} / 0.4 \mathrm{~A}$
Hard wire jumper	Between terminal 6 and 10 factory default
Dip switch setting default	$\begin{aligned} & \text { RS485 = off } \\ & \text { A01 }=\text { current } \\ & \text { A12 }=\text { current } \\ & \text { A11 }=\text { voltage } \end{aligned}$
Protections	
Overcurrent protection	Yes
Overvoltage protection	Yes
DC bus regulation anti-trip	Yes (accelerates or decelerates the load)
Undervoltage protection	Yes
Earth fault protection	Yes (in case of earth fault in motor or motor cable, only the frequency converter is protected)
Input phase supervision	Yes (trips if any of the input phases are missing)
Motor phase supervision	Yes (trips if any of the output phases are missing)
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes
Surge protection	Yes (varistor input)
Conformed coated (varnished) boards	Yes (prevents corrosion)

Wiring Diagram

Control Input/Output, PID Application

Standards

- Digital inputs D1-D6, relay out, analog in/out are freely programmed
- The user can assign a single input to multiple functions

Includes

- Six digital input
- Two analog input
- One analog output
- Three relay output
- RS-485
- Ethernet (BACnet and Modbus)

Reliability

- Pretested components
- Conformal coated (varnished) boards
- $40^{\circ} \mathrm{C}$ rated
- 110% overload for one minute
- Eaton Electrical Services \& Systems national network of AF drive specialists
2.5

Adjustable Frequency Drives
H-Max Series Drives

Dimensions

Approximate Dimensions in Inches (mm)
2
H-Max Series Frames FS4-FS7

Voltage	hp	kW	Amps	D	H1	Hole Center-to-Center H2	H3	W1	W2	W3	Weight in Lbs (kg)
FS4											
230 Vac	0.75-4	0.55-3.0	3.7-12.5	$\begin{aligned} & 7.77 \\ & \text { (197.3) } \end{aligned}$	$\begin{aligned} & 12.89 \\ & (327.5) \end{aligned}$	$\begin{aligned} & 12.32 \\ & (313.0) \end{aligned}$	$\begin{aligned} & \hline 11.22 \\ & (285.0) \end{aligned}$	$\begin{aligned} & 5.04 \\ & (128.0) \end{aligned}$	$\begin{aligned} & 3.94 \\ & (100.0) \end{aligned}$	$\begin{aligned} & 3.94 \\ & (100.0) \end{aligned}$	$\begin{aligned} & 13.2 \\ & (6) \end{aligned}$
480 Vac	1.5-7.5	1.1-5.5	3.4-12								
FS5											
230 Vac	5-10	4-7.5	18-31	$\begin{aligned} & \hline 8.73 \\ & (221.6) \end{aligned}$	$\begin{aligned} & 16.50 \\ & (419.0) \end{aligned}$	$\begin{aligned} & 15.98 \\ & (406.0) \end{aligned}$	$\begin{aligned} & 15.04 \\ & (382.0) \end{aligned}$	$\begin{aligned} & \hline 5.67 \\ & (144.0) \end{aligned}$	$\begin{aligned} & 4.53 \\ & (115.0) \end{aligned}$	$\begin{aligned} & 3.94 \\ & (100.0) \end{aligned}$	$\begin{aligned} & 22.0 \\ & (10) \end{aligned}$
480 Vac	10-20	7.5-15	16-31								
FS6											
230 Vac	15-20	11-15	48-62	$\begin{aligned} & \hline 9.29 \\ & (236.0) \end{aligned}$	$\begin{aligned} & 21.93 \\ & \text { (557.0) } \end{aligned}$	$\begin{aligned} & 21.28 \\ & (540.5) \end{aligned}$	$\begin{aligned} & 20.24 \\ & (514.0) \end{aligned}$	$\begin{aligned} & \hline 7.68 \\ & \text { (195.0) } \end{aligned}$	$\begin{aligned} & 5.83 \\ & (148.0) \end{aligned}$	$\begin{aligned} & 5.83 \\ & (148.0) \end{aligned}$	$\begin{aligned} & 44.1 \\ & (20) \end{aligned}$
480 Vac	25-40	18.5-30	38-61								
FS7											
230 Vac	25-30	18.5-30	75-105	$\begin{aligned} & \hline 10.49 \\ & (266.5) \end{aligned}$	$\begin{aligned} & 25.98 \\ & (660.0) \end{aligned}$	$\begin{aligned} & \hline 25.39 \\ & (645.0) \end{aligned}$	$\begin{aligned} & 24.29 \\ & (617.0) \end{aligned}$	$\begin{aligned} & 9.06 \\ & (230.0) \end{aligned}$	$\begin{aligned} & 7.48 \\ & (190.0) \end{aligned}$	$\begin{aligned} & 7.48 \\ & (190.0) \end{aligned}$	$\begin{aligned} & 82.6 \\ & (37.5) \end{aligned}$
480 Vac	50-75	37-55	72-105								

H-Max Series Frames FS8 and FS9

Voltage	hp	kW	Amps	D	H1	Hole Center-to-Center H2	H3	W1	W2	W3	Weight in Lbs (kg)
FS8											
230 Vac	50-75	37-55	140-205	$\begin{aligned} & 13.76 \\ & (349.6) \end{aligned}$	$\begin{aligned} & 38.02 \\ & \text { (965.7) } \end{aligned}$	$\begin{aligned} & 37.26 \\ & (946.4) \end{aligned}$	$\begin{aligned} & \hline 37.26 \\ & (946.4) \end{aligned}$	$\begin{aligned} & 11.42 \\ & (290.1) \end{aligned}$	$\begin{aligned} & 9.29 \\ & (236.0) \end{aligned}$	$\begin{aligned} & 1.42 \\ & (36.0) \end{aligned}$	$\begin{aligned} & 154.3 \\ & (70) \end{aligned}$
480 Vac	100-150	75-110									
FS9											
230 Vac	100-120	75-90	261-310	$\begin{aligned} & \hline 14.63 \\ & (371.6) \end{aligned}$	$\begin{aligned} & 33.09 \\ & (890.4) \end{aligned}$	$\begin{aligned} & 31.89 \\ & (810.0) \end{aligned}$	$\begin{aligned} & \hline 31.89 \\ & (810.0) \end{aligned}$	$\begin{aligned} & 18.90 \\ & (480.0) \end{aligned}$	$\begin{aligned} & 15.75 \\ & (400.0) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40.0) \end{aligned}$	$\begin{aligned} & 238.1 \\ & (108) \end{aligned}$
480 Vac	200-250	132-160									

Note: For flange dimension, please reference User Manual.

H-Max IntelliPass and IntelliDisconnect Drives

H-Max IntelliPass and IntelliDisconnect Drives

Product Description

The IntelliPass electronic bypass is a two or optional three contactor design using a 24 Vd $\boldsymbol{X T}$ Series contactor with an optional manual override switch that allows the unit to run in bypass without the H-Max Series drive.

The IntelliPass software parameters utilize engineering units common to the HVAC industry. Onboard startup wizard guarantees flawless commissioning with plug-andplay screen entry. Available in NEMA/UL Type 1 and 12 with optional pre-engineered operator devices to meet all customized specification requirements.
The IntelliPass construction features allow for easy installation, reliable operation and serviceability with additional onboard wire space and removable conduit plates with knockouts.

Features and Benefits

Industry leading energy saving solution-uses the Eaton H-Max drive with Active Energy Control algorithm.
Built to be as tough as the application-Eaton's robust design boasts an industrial grade enclosure and industry proven components.

- PSG Industrial Power Supply
- XT Contactor
- 22 mm Pilot Devices

Contents

| Description | Page |
| :--- | :--- | ---: |
| H-Max Drives . | V6-T2-139 |
| H-Max IntelliPass and IntelliDisconnect Drives | |
| \quad Catalog Number Selection | V6-T2-150 |
| Product Selection | V6-T2-151 |
| Technical Data and Specifications | V6-T2-155 |
| Wiring Diagrams . | V6-T2-156 |
| Dimensions . | V6-T2-158 |

Designed with Our Customers in Mind

- Removable top and bottom entry panels
- Door mounted graphic display and keypad
- Easily accessible connection terminals with removable I/O terminal connections

Engineered Product Solution

- The Eaton H-Max

IntelliPass and IntelliDisconnect products are available with a variety of factory tested and certified options meeting or exceeding UL508C requirements

Standards and Certifications
 Product
 - IEC 61800-5-1
 - CE
 - bUL
 Safety
 - UL 508C
 - EN 61800-5-1
 - CE
 - cUL

- Plenum Rated

Adjustable Frequency Drives

H-Max Series Drives

Catalog Number Selection

H-Max Series IntelliPass and IntelliDisconnect Drives

Standard Onboard Communications	
RS-485 Communications	
BACnet MS/TP = Master slave/token protocol (Universal BACnet) RS-485 Modbus RTU RS-485, ASCII or RTU, remote terminal unit 32 nodes N2 $=$ Johnson Controls Metasys N2 network	
Onboard Ethernet-Based Communications (port left side of keypad)	
BACnet//P Ethernet industrial protocol Modbus/TCP Transmission control protocol (Ethernet-based)	

Notes
IntelliPass-two contactor electronic bypass standard.
All boards are varnished. Corrosion resistant.
Battery included in all drives for real-time clock. Three year lifetime.
Keypad kit includes HOA bypass.
EMI/RFI filters included.
DC link choke included.

Product Selection

H-Max Series IntelliPass NEMA Type 1—Two Contactor Bypass Standard

230 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	4.2	HMX4D232NA
	2	7.5	HMX7D532NA
5	3	9.6	HMX9D632NA
	5	15.2	HMX01632NA
	10	22	HMX02232NA
6	15	28	HMX02832NA
7	20	42	HMX04232NA
	25	54	HMX05432NA
	30	80	HMX06832NA

480 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	2.1	HMX2D134NA
	2	3.4	HMX3D434NA
	3	5.6	HMX5D634NA
	5	9.6	HMX9D634NA
	7.5	11	HMX01134NA
5	10	14	HMX01434NA
	15	21	HMX02134NA
	20	27	HMX02734NA
6	25	34	HMX03434NA
	30	40	HMX04034NA
	40	52	HMX05234NA
7	50	65	HMX06534NA
	60	77	HMX07734NA
	75	96	HMX09634NA

Notes

For Wiring Diagrams, see Page V6-T2-157.
For NEMA 12 or 3R enclosures, see Catalog Number Selection on Page V6-T2-150
Call Technical Support for NEMA 3R specifics. Enclosure size and weight differ from NEMA 1 and 12 products.

Adjustable Frequency Drives
H-Max Series Drives

H-Max Series IntelliDisconnect NEMA Type 1-Main Disconnect Standard

230 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	4.2	HMX4D2A2NA
	2	7.5	HMX7D5A2NA
	3	9.6	HMX9D6A2NA
5	5	15.2	HMX016A2NA
	7.5	22	HMX022A2NA
10	28	HMX028A2NA	
7	15	42	HMX054A2NA
	20	54	HMX068A2NA

480 Vac

FS Frame Size	Horsepower	Drive Rated NEC Amps	Catalog Number
4	1	2.1	HMX2D1A4NA
	2	3.4	HMX3D4A4NA
	3	5.6	HMX5D6A4NA
5	9.6	HMX9D6A4NA	
5	10	11	HMX011A4NA
	15	21	HMX014A4NA
6	20	27	HMX021A4NA
7	25	34	HMX027A4NA
	30	50	HMX034A4NA
	40	65	HMX040A4NA
	50	77	HMX065A4NA
	75	96	HMX077A4NA

Notes

For Wiring Diagrams, see Page V6-T2-157.
For NEMA 12 or 3R enclosures, see Catalog Number Selection on Page V6-T2-150.
Call Technical Support for NEMA 3R specifics. Enclosure size and weight differ from NEMA 1 and 12 products.

Onboard Network Communications

Johnson Controls

Metasys N2

H-Max Series provides communication between the drive and a Johnson Controls Metasys ${ }^{\text {TM }}$ N2 network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. N2 can be selected and programmed by the drive keypad.

BACnet

H-Max Series provides communication to BACnet networks. Data transfer is master-slave/token passing (MS/TP) RS-485.

BACnet IP

100 base T interface.
Modbus TCP
Ethernet based protocol.

H-Max Series Option Board Kits Available for Slots D and E

The H-Max Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your
application needs. The drive's control unit is designed to accept a total of two option boards.

Modbus RTU

H-Max Series provides communication to Modbus RTU RS-485 as a slave on a Modbus network. Other communication parameters include an address range from 1-247; a parity of None, Odd or Even; and the stop bit is 1 .

The H-Max Series factoryinstalled standard board configuration includes an I/O board and a relay output board

Option Boards Mounted in Slots D and E

Option Kit Description	Option Kit Catalog Number
$6 \times$ DI /DO, each digital input can be individually programmed as digital output	XMX-IO-B1-A
1RO Form C (NO/NC), 1RO Form A (NO), 1 thermistor	XMX-IO-B2-A
$1 \times$ AI, $2 \times$ AO (isolated)	XMX-IO-B4-A
$3 \times$ RO Form A (NO)	XMX-IO-B5-A
1 RO Form A (NO), 5DI 42-240 Vac input	XMX-IO-B9-A
LonWorks ${ }^{\circledR}$	XMX-COM-C4-A
$1 \times$ AO, $1 \times$ DO, $1 \times$ RO	XMX-IO-BF-A

Adjustable Frequency Drives

H-Max Series Drives

Extended I/O Options in Slot D and E

Description $6 \times \mathrm{DI} / \mathrm{DO}$, Each digital input can be individually programmed as digital output	Suffix Number
RO (NC/NO), 1RO (NO), 1 Thermistor	B1
$1 \times \mathrm{Al}, 2 \times$ AO (isolated)	B2
$3 \times$ RO	B4
$1 \mathrm{RO}(\mathrm{NO}), 5$ DI 42-240 Vac input	B5
Expander IO, 1 AO, 1 DO, 1 RO	B9

Optional Communications
in Slot D and E

Description	Suffix Number
LonWorks $^{\circledR}$	C4

EMC Upgrade	
	Option
Description	Suffix Number
Standard	EMC C2

Keypad Options

Description	Suffix Number
None available	-

IntelliDisconnect Options

Description	Suffix Number
Pilot lights (Power ON, RUN, Fault)	L3
Fused drive isolation (cannot be used with PE)	P3
Output contactor (cannot be used with P3)	PE
Space heater w/transformer (Type 3R only)	SA

IntelliPass Bypass Options

Description	Suffix Number
Pilot lights (Power ON, RUN, Fault)	L4
Fused drive isolation (can not be used with P6)	P3
Third contactor drive isolation (cannot be used with P3 or IS)	P6
Manual bypass switch located on front door	M1
Space heater w/transformer (Type 3R only)	SA
Auxiliary contacts	K9
Isolation switch	IS

Standard Onboard Communications

Description	Suffix Number
RS-485 Communications	
BACnet MS/TP = Master slave/token protocol (Universal BACnet) RS-485	BACnet
Modbus RTU RS-485, ASCII or RTU, remote terminal unit 32 nodes	Modbus
Johnson Controls Metasys N2 network	N2
Onboard Ethernet-Based Communications (port left side of keypad)	
BACnet/IP Ethernet industrial protocol	BACnet
Modbus/TCP Transmission control protocol (Ethernet-based)	Modbus

Technical Data and Specifications

Primary Design Features

Description	IntelliPass	IntelliDisconnect
CB MMP	Standard	Standard
2 contactor bypass	Standard	N/A
Mechanical interlock	Standard	N/A
Electrical interlock	Standard	N/A
Third contactor (isolation)	Optional	N/A

Description	IntelliPass	IntelliDisconnect
solation switch	Optional	N/A
Top entry (power)	Standard	Standard
Bottom entry (power)	Standard	Standard
Output contactor	Standard	Optional

H-Max Series Drives

Description	Specification
Input Ratings	
Input voltage ($\mathrm{V}_{\text {in }}$)	208, 230, $480 \mathrm{Vac},-10 \% /+10 \%$
Input frequency ($\mathrm{f}_{\text {in }}$)	$50 / 60 \mathrm{~Hz}$ (variation up to 47-66 Hz)
Connection to power	Once per minute or less (typical operation)
Short circuit withstand rating	65 kAIC combination
Output Ratings	
Output voltage	0 to $\mathrm{V}_{\text {in }} / \mathrm{U}_{\text {in }}$ line voltage in
Continuous output current	Ambient temperature max. $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$
L overload	$1.1 \times \mathrm{I}_{\mathrm{L}}(1 \mathrm{~min} . / 10 \mathrm{~min}$.
Overload current	110\% (1 min./10 min.)
Initial output current	150\% for two seconds
Output frequency	0 to 320 Hz
Frequency resolution	0.01 Hz
Control Characteristics	
Control method	Frequency control (V/f) open loop sensorless vector control
Switching frequency	1-310 amps; adjustable with parameter 2.6.9 FS4-FS7: default 6 kHz
Frequency reference	Analog input: Resolution 0.1% (10-bit), accuracy $\pm 1 \%$ Panel reference: Resolution 0.01 Hz
Field weakening point	8 to 320 Hz
Acceleration time	0.1 to 3000 seconds
Deceleration time	0.1 to 3000 seconds
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$
Ambient Conditions	
Ambient operating temperature	FS4-FS7: $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ (Drive can operate at $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$
Storage temperature	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative humidity	0 to 95\% RH, noncondensing, non-corrosive, no dripping water
Air quality	Chemical vapors: IEC 60721-3-3, unit in operation, Class 3C2; Mechanical particles: IEC 60721-3-3, unit in operation, Class 3S2
Altitude	100% load capacity (no derating) up to $3280 \mathrm{ft}(1000 \mathrm{~m})$; 1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above $3280 \mathrm{ft}(1000 \mathrm{~m})$; max. $9842 \mathrm{ft}(3000 \mathrm{~m}) ; 380-480 \mathrm{~V}$
Vibration	FS4-FS7: IEC 60068-2-6, 10-150 Hz Displacement amplitude $=1 \mathrm{~mm}$ peak-to-peak from $10-15.8 \mathrm{~Hz}$ Max. acceleration amplitude $=1 \mathrm{G}$ peak from $15.8-150 \mathrm{~Hz}$
Shock	FS4-FS7: IEC 60068-2-27, 15G peak acceleration at 11 ms duration, $1 / 2$-sine. ISTA 1 A Certified
Enclosure class	NEMA Type 1/IP21 or NEMA Type 12/IP54 (keypad required for IP54/Type 12)

Description	Specification
Standards	
EMC	Immunity: Fulfills all EMC immunity requirements; Emissions: EN 61800-3, LEVEL H (EMC C2)
Emissions	EMC level dependent- +EMC 2: EN61800-3 (2004) Category C2 Delivered with Class C2 EMC filtering as default.
Control Connections	
Analog input voltage	0 to 10V, R = 200 kohms differential Resolution 0.1\%; Accuracy $\pm 1 \%$ Dip switch selection (voltage/current)
Analog input current	$0(4)$ to $20 \mathrm{~mA} ; \mathrm{B}_{\mathrm{i}}-250$ ohms differential
Digital inputs (6)	Positive or negative logic; 18 to 30 Vdc
Auxiliary voltage	$+24 \mathrm{~V} \pm 10 \%$, max. 250 mA
Output reference voltage	$+10 \mathrm{~V}+3 \%$, max. load 10 mA
Analog output	$0-10 \mathrm{~V}, 0(4)$ to $20 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}$ max. 500 ohms ; Resolution 10 bit; Accuracy $\pm 2 \%$; Dip switch selection (voltage/current)
Relay outputs	3 programmable, 2 Form C, 1 Form A relay outputs Switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}, 125 \mathrm{Vdc} / 0.4 \mathrm{~A}$
Hard wire jumper	Between terminal 6 and 10 factory default
Dip switch setting default	$\begin{aligned} & \text { RS485 = off } \\ & \text { A01 }=\text { current } \\ & \text { A12 }=\text { current } \\ & \text { A11 }=\text { voltage } \end{aligned}$
Protections	
Overcurrent protection	Yes
Overvoltage protection	Yes
DC bus regulation anti-trip	Yes (accelerates or decelerates the load)
Undervoltage protection	Yes
Earth fault protection	Yes (in case of earth fault in motor or motor cable, only the frequency converter is protected)
Input phase supervision	Yes (trips if any of the input phases are missing)
Motor phase supervision	Yes (trips if any of the output phases are missing)
Overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection	Yes
Surge protection	Yes (varistor input)
Conformed coated (varnished) board	Yes (prevents corrosion)

Adjustable Frequency Drives

H-Max Series Drives

Wiring Diagrams

Control Input/Output, PID Application

Standards

- Digital inputs D1-D6, relay out, analog in/out are freely programmed
- The user can assign a single input to multiple functions

Includes

- Six digital input
- Two analog input
- One analog output
- Three relay output
- RS-485
- Ethernet

Reliability

- Pretested components
- Conformal coated (varnished) boards
- $40^{\circ} \mathrm{C}$ rated
- 110% overload for one minute
- Eaton Electrical Services \& Systems national network of AF drive specialists

H-Max Series Drives

H-Max Series IntelliPass

H-Max Series IntelliDisconnect Power Wiring

2.5

Adjustable Frequency Drives

H-Max Series Drives

Dimensions

Approximate Dimensions in Inches (mm)
2
H-Max Series IntelliPass and IntelliDisconnect Drives

Consult factory or use manual for final dimensions.

Frame Size	Voltage	Horsepower (I_{L})	H1	H2	H3	H4	C	W1	W2	W3	D1	D2	Weight in Lbs (kg)
FS4	208	1-3	$\begin{aligned} & 29.69 \\ & (754.1) \end{aligned}$	$\begin{aligned} & 37.12 \\ & \text { (942.9) } \end{aligned}$	$\begin{aligned} & 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 31.00 \\ & \text { (914.4) } \end{aligned}$	$\begin{aligned} & 3.00 \\ & (76.2) \end{aligned}$	$\begin{aligned} & 7.88 \\ & (200.2) \end{aligned}$	$\begin{aligned} & 6.33 \\ & (160.8) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 11.40 \\ & (289.6) \end{aligned}$	$\begin{aligned} & 9.27 \\ & (235.5) \end{aligned}$	45 (20.41)
	230	1-3											
	480	1-7.5											
FS5	208	5-10	$\begin{aligned} & 37.00 \\ & (939.8) \end{aligned}$	$\begin{aligned} & 34.47 \\ & (875.5) \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 38.31 \\ & \text { (973.0) } \end{aligned}$	$\begin{aligned} & 3.00 \\ & (76.2) \end{aligned}$	$\begin{aligned} & 9.40 \\ & (238.8) \end{aligned}$	$\begin{aligned} & 7.75 \\ & (196.9) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 15.30 \\ & (388.6) \end{aligned}$	$\begin{aligned} & 13.17 \\ & (334.6) \end{aligned}$	57.5 (26.10)
	230	5-10											
	480	10-20											
FS6	208	15-20	$\begin{aligned} & 45.08 \\ & (1145.0) \end{aligned}$	$\begin{aligned} & \hline 40.28 \\ & (1023.1) \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & \hline 46.4 \\ & (1178.6) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (101.6) \end{aligned}$	$\begin{aligned} & 10.90 \\ & (276.9) \end{aligned}$	$\begin{aligned} & 9.35 \\ & (327.5) \end{aligned}$	$\begin{aligned} & \hline 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 15.75 \\ & (400.0) \end{aligned}$	$\begin{aligned} & 13.62 \\ & (346.0) \end{aligned}$	98.0 (44.45)
	230	15-20											
	480	25-40											
FS7	208	25-30	$\begin{aligned} & \hline 58.32 \\ & (1481.3) \end{aligned}$	$\begin{aligned} & \hline 56.30 \\ & (1430.0) \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & (6.35) \end{aligned}$	$\begin{aligned} & \hline 59.46 \\ & (1510.3) \end{aligned}$	$\begin{aligned} & 5.00 \\ & (127.0) \end{aligned}$	$\begin{aligned} & 13.98 \\ & (355.1) \end{aligned}$	$\begin{aligned} & 12.35 \\ & (313.7) \end{aligned}$	$\begin{aligned} & \hline 0.75 \\ & (19.1) \end{aligned}$	$\begin{aligned} & 15.50 \\ & (393.7) \end{aligned}$	$\begin{aligned} & 13.55 \\ & (244.2) \end{aligned}$	165.0 (74.84)
	230	25-30											
	480	50-75											

Note: C distance is spacing required to mount multiple drives.

Product Description

The CFX9000 Clean Power Drives from Eaton's electrical sector use tuned passive filters to significantly reduce line harmonics at the drive input terminals.
The CFX9000 drive also delivers True Power Factorin addition to reducing harmonic distortion, the CFX9000 drive prevents transformer overheating and overloading of breakers and feeders, which enables the application of adjustable frequency drives on generators and other high impedance power systems.

Contents

Description	Page
CFX9000 Drives	
Application Description	V6-T2-160
Features and Benefits	V6-T2-166
Standards and Certifications	V6-T2-166
Product Identification	V6-T2-166
Catalog Number Selection	V6-T2-167
Product Selection	V6-T2-168
Options	V6-T2-175
Technical Data and Specifications	V6-T2-180
Wiring Diagram	V6-T2-182
Dimensions	V6-T2-183

The 9000X family of drives includes HVX9000, SVX9000, SLX9000, and SPX9000. 9000X Series drive ratings are rated for either high overload $\left(I_{H}\right)$ or low overload (I_{L}). I_{L} indicates 110% overload capacity for 1 minute out of 10 minutes. I_{H} indicates 150\% overload capacity for 1 minute out of 10 minutes.

CFX9000 Enclosed Products

- Standard Enclosedcovers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options. Available configurations are listed on Pages V6-T2-166 to V6-T2-181.
- Modified Standard Enclosed-applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Contact your local sales office for assistance in pricing and lead time.
- Custom Engineered-for those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Contact your local sales office for assistance in pricing and lead time.

Application Description

Designed to meet the IEEE ${ }^{\circledR}$
519-1992 requirements for harmonic distortion, the CFX9000 is an excellent

What Are Harmonics?

Take a perfect wave with a fundamental frequency of 60 Hz , which is close to what is supplied by the power company.

Perfect Wave

Add a second wave that is five times the fundamental frequency300 Hz (typical of frequency added to the line by a fluorescent light).
Second Wave

Combine the two waves. The result is a $\mathbf{6 0 ~ H z ~ s u p p l y ~ r i c h ~ i n ~}$ fifth harmonics.
Resulting Supply

What Causes Harmonics?

Harmonics are the result of nonlinear loads that convert $A C$ line voltage to $D C$. Examples of equipment that are non-linear loads are listed below:

- AC variable frequency drives
- DC drives
- Fluorescence lighting, computers, UPS systems
- Industrial washing machines, punch presses, welders, etc.

How Can Harmonics Due to VFDs Be Diminished?
By applying drives from the Eaton Clean Power Drives Family; The HCX9000, CFX9000 and CPX9000.

What Are Linear Loads?

Linear loads are primarily devices that run across the line and do not add harmonics. Motors are prime examples. The downside to having large motor linear loads is that they draw more energy than a VFD, because of their inability to control motor speed. In most applications there is a turn down valve used with the motor which will reduce the flow of the material, without significantly reducing the load to the motor. While this provides some measure of speed control, it is extremely inefficient.

How Does a VFD Convert Three-Phase AC to a Variable Output Voltage and Frequency?

The six-pulse VFD: The majority of all conventional drives that are built consist of a six-pulse configuration. The figure below represents a sixdiode rectifier design that converts three-phase utility power to DC. The inverter section uses IGBTs to convert DC power to a simulated AC sine wave that can vary in frequency from $0-400 \mathrm{~Hz}$.

The six-pulse VFD drive creates harmonic current distortion. The harmonic current that is created is energy that can not be used by customers and causes external heat and losses to all components including other drives that are on the same power distribution. The figure is a 100 hp drive with 45 A of damaging harmonic current.

100 hp Six-Diode Rectifier Design

100 hp Six-Pulse Nonproductive Harmonic Current

Six-Pulse Nonproductive Harmonic Current
Six-Pulse Circuit

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=6.10 \%$	$\mathrm{I}_{19}=1.77 \%$
$\mathrm{I}_{5}=22.5 \%$	$\mathrm{I}_{13}=4.06 \%$	$\mathrm{I}_{23}=1.12 \%$
$\mathrm{I}_{7}=9.38 \%$	$\mathrm{I}_{17}=2.26 \%$	$\mathrm{I}_{25}=0.86 \%$

Power = 100 hp
Harmonic current $=45 \mathrm{amps}$

Guidelines of Meeting IEEE Std. 519-1992

Harmonic Distortion Limits

The IEEE 519-1992
Specification is a standard that provides guidelines for commercial and industrial
users that are implementing medium and low voltage equipment.

Maximum Harmonic Current Distortion in \% of the Fundamental (120V through 69,000V)

Isc/L ${ }_{\text {L }}$	Harmonic Order (Odd Harmonics)			23<h<35	35<h	TDD
	$\mathrm{h}<11$	11<h<17	17<h<23			
<20	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

The ratio $I s c / L_{L}$ is the ratio of the short-circuit current available at the point of common coupling (PCC), to the maximum fundamental load current. Consequently, as the size of the user load decreases with respect to the size of the system, the percentage of harmonic current that the user is allowed to inject into the utility system increases.

Notes

TDD = Total demand distortion is the harmonic current distortion in percent of the maximum demand load current (15 or 30 minute demand).
$I_{S C}=$ Maximum short circuit current at the PCC not counting motor contribution.
$I_{L}=$ Maximum demand load current for all of the connected loads (fundamental frequency component) at the PCC. All of the limits are measured at a point of common coupling.

CFX9000 Drives

Adjustable Frequency Drives
CFX9000 Drives

One-Line Diagram for Harmonic Analysis
2

The best way to estimate AFD harmonic contribution to an electrical system is to perform a harmonic analysis based on known system characteristics. The one line in this figure would provide the data to complete the calculations.

Terms

- PCC (Point of Common Coupling) is defined as the electrical connecting point between the utility and multiple customers per the specifications in IEEE 519
- POA (Point of Analysis) is defined as where the harmonic calculations are taken

An oscilloscope can make all measurements at the PCC or POA to do an on-site harmonic evaluation.

Harmonic Reduction Methods to Meet IEEE 519

1. Line Reactor

A line reactor is a three-phase series inductance on the line side of an AFD. If a line reactor is applied on all AFDs, it is possible to meet IEEE guidelines where $10-25 \%$ of system loads are AFDs, depending on the stiffness of the line and the value of line reactance. Line reactors are available in various values of percent impedance, most typically $1-1.5 \%, 3 \%$ and 5%.

Note: The 9000X drives come standard with a nominal 3% input impedance.

Line Reactor

Advantages

- Low cost
- Can provide moderate reduction in voltage and current harmonics
- Available in various values of percent impedance
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- May not reduce harmonic levels to below IEEE 5191992 guidelines
- Voltage drop due to IR loss

2. Passive Filters

Tuned harmonic filters involve the series connection of an inductor with the shunt connection of an inductor and capacitor to form a low impedance path to ground for
a specific range of frequencies. This path presents an alternative to the flow of harmonic currents back into the utility source.

CFX9000 Drive with Integrated Passive Filter

100 hp CFX9000 480V Drive with Integrated Passive Filter

100 hp CFX9000 480V Drive with Integrated Passive Filter Passive Filter

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=0.24 \%$	$\mathrm{I}_{19}=0.50 \%$
$\mathrm{I}_{5}=3.76 \%$	$\mathrm{I}_{13}=1.1 \%$	$\mathrm{I}_{23}=0.55 \%$
$\mathrm{I}_{7}=1.65 \%$	$\mathrm{I}_{17}=0.80 \%$	$\mathrm{I}_{25}=0.80 \%$
Power $=100 \mathrm{hp}$		
$\mathrm{H}_{\mathrm{C}}=8.6$ Amps		
Advantages		

Advantages

- Low cost for smaller horsepower applications
- More effective harmonic attenuation than 12-pulse drives
- Provides increased input protection for AFD from line transients

Disadvantages

- Capacitors age over time, unlike magnetics
- Not as effective as 18-pulse drives
- Challenging to retrofit with bypass applications

3. 12-Pulse Converters

A 12-pulse converter incorporates two separate AFD input semiconductor bridges, which are fed from 30° phase shifted power sources with identical impedance. The sources may be two isolation transformers, where one is a delta/wye design (which provides the phase shift) and
the second a delta/delta design (which does not phase shift). The 12-pulse arrangement allows the harmonics from the first converter to cancel the harmonics of the second. Up to approximately 85% reduction of harmonic current and voltage distortion may be achieved (over standard
six-pulse converter). This permits a facility to use a larger percentage of AFD loads under IEEE 519-1992 guidelines than allowable using line reactors or DC chokes. A harmonic analysis is required to guarantee compliance with guidelines.

Basic 12-Pulse Rectifier with "Phase Shifting" Transformer

100 hp 480 V Drive with 12-Pulse Rectifier

100 hp 480 V Drive with 12-Pulse Rectifier
12-Pulse Circuit

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=4.19 \%$	$\mathrm{I}_{19}=0.06 \%$
$\mathrm{I}_{5}=1.25 \%$	$\mathrm{I}_{13}=2.95 \%$	$\mathrm{I}_{23}=0.87 \%$
$\mathrm{I}_{7}=0.48 \%$	$\mathrm{I}_{17}=0.21 \%$	$\mathrm{I}_{25}=0.73 \%$
Power $=100 \mathrm{hp}$		
$\mathrm{H}_{\mathrm{c}}=20$ Amps		
Advantages		

Advantages

- Reasonable cost, although significantly more than reactors or chokes
- Substantial reduction (up to approx. 85\%) in voltage and current harmonics
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- Impedance matching of phase shifted sources is critical to performance
- Transformers often require separate mounting or larger AFD enclosures
- May not reduce distribution harmonic levels to below IEEE 519-1992 guidelines
- Cannot retrofit for most AFDs

4. Clean Power Drives

When the total load is comprised of non-linear load such as drives, and the ratio is $I_{S C} / I_{L}$, the greatest harmonic mitigation is required. Under these conditions, the currents drawn from the supply need to be sinusoidal and "clean" such that system interference and additional
losses are negligible. Eaton's CPX9000 clean power drive uses a phase-shifting auto-transformer with delta-connected winding that carries only the ampere-turns caused by the difference in load currents. This results in nine separate phases. In this type of configuration, the
total kVA rating of the transformer magnetic system was only 48\% that of the motor load. A traditional isolated transformer system, with multipulse windings, would require the full kVA rating to be supported, which is more common in an MV step-down transformer.

The integrated 18-pulse clean power drive, with near sine wave input current and low harmonics will meet the requirements of IEEE 5191992 under all practical operating conditions. The comparisons with six-pulse passive filter and 12-pulse systems are shown on Pages V6-T2-161, V6-T2-163 and below.

Basic 18-Pulse Rectifier with Phase-Shifting Auto-Transformer

100 hp 480 V Drive with 18-Pulse Rectifiers

100 hp 480V Drive with 18-Pulse Rectifiers
18-Pulse Clean Power

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=0.24 \%$	$\mathrm{I}_{19}=1.00 \%$
$\mathrm{I}_{5}=0.16 \%$	$\mathrm{I}_{13}=0.10 \%$	$\mathrm{I}_{23}=0.01 \%$
$\mathrm{I}_{7}=0.03 \%$	$\mathrm{I}_{17}=0.86 \%$	$\mathrm{I}_{25}=0.01 \%$
Power $=100 \mathrm{hp}$		
$\mathrm{H}_{\mathrm{c}}=5.9 \mathrm{Amps}$		

Advantages

- Effectively guarantees compliance with IEEE 5191992
- Provides increased input protection for AFD and its semiconductors from line transients
- Up to 4 times the harmonic reduction of 12 -pulse methods
- Smaller transformer than isolation transformer used in 12-pulse converter
- Minimizes ripple current in capacitors, doubling expected capacitor life

Disadvantages

- Not as cost effective as some other methods at small (<50) horsepower

Features and Benefits

New CFX9000 Integrated Filter Clean Power Drive features include (at 480V):

- UL Type 1, UL Type 12, UL Type 3R and NEMA 12 with gaskets and filters
- Input voltage: $480 \mathrm{~V}, 230 \mathrm{~V}$, 575 V
- Complete range of control, network and power options
- Horsepower range:
- 480V, 7-1/2-400 hp IL
- 230V, 7-1/2-100 hp IL; consult factory for details
- 575V, 15-400 hp IL; consult factory for details

Standards and Certifications
 - UL
 - cUL
 - 508C

Product Identification

CFX9000 Drive-UL Type 12, 40 hp

- Single enclosure for both drive and filter reduces field wiring and enables convenient bypass installation
- Packaged solution ensures optimal coordination of drive and filter

Catalog Number Selection

CFX9000 Enclosed Drives

Enclosed Options ${ }^{(2) 3(4)}$		Type
K1	Door-mounted speed potentiometer (5)	
K2	Door-mounted speed potentiometer with HOA selector switch (5)	Control
K3	$3-15$ psig follower	
K4	HAND/OFF/AUTO switch $(22 \mathrm{~mm})$	Control
K5	MANUAL/AUTO reference switch (22 mm)	Control
K6	START/STOP pushbuttons (22 mm)	Control
KF	Bypass test switch for RA and RB	Control
K0	Standard elapsed time meter	Addl. bypass
L1	Power, RUN and fault pilot lights	Control
L2	Bypass pilot lights for RA, RB, bypass options	Light
LE	Addl. bypass	

Red RUN ligh

Input circuit breaker
Light

P1	
P3	Inp

Input power surge protection

TVSS surge protective device	Input

TVSS surge protective device \quad Input

Output contactor
Input

PE	Output contac
PF	Output filter

MotoRx (up to 600 ft) $1000 \mathrm{~V} / \mu \mathrm{S}$ DV/DT filter
Single overload relay
Dual overload relays
Dual overloads for bypass
Manual HOA bypass controller
Manual IOB bypass controller
Auto transfer HOA bypass controller
Auto transfer IOB bypass controller
Reduced voltage starter for bypass

	B	B
S4	Floor stand 6 in	By
S5	Floor	

S5	Floor stand 22 in	En
S6	Floor stand 12 in	En
S9	Space heater	En

Space heater
Output
Output

Output
Output
Output
Addl. bypass

Bypass
Bypass
Bypass
Bypass
Bypass
Bypass
nclosure
Enclosure
Enclosure
Enclosure

B1 = 6 DI, 1 ext +24 Vdc/EXT +24 Vdc
B2 = 1 RO (NC-NO), 1 RO (NO), 1 therm
$\mathbf{B 4}=1 \mathrm{Al}$ (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / E X T+24 \mathrm{Vdc}$
$\mathbf{B 5}=3 \mathrm{RO}$ (NO)
B8 $=1$ ext $+24 \mathrm{Vdc} / E X T+24 \mathrm{Vdc}, 3 \mathrm{Pt} 100$
B9 = 1 RO (NO), 5 DI 42-240 Vac input

Notes

(1) Brake chopper is standard in $208 \mathrm{~V}, 230 \mathrm{~V}$ and 480 V drives up to FR6; optional in all other drives.
(2) Local/remote keypad is included as the standard control panel.
${ }^{(3)}$ Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
(4) See Pages V6-T2-177 and V6-T2-178 for complete descriptions.
(5) Includes local/remote speed reference switch.
(6) See Pages V6-T2-175 and V6-T2-176 for complete descriptions.
(7) Consult Eaton for availability.

Product Selection

When Ordering

- Select a base catalog number that meets the application requirementsnominal horsepower, voltage and enclosure rating. (The enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating.) The base enclosed package includes a standard drive, doormounted alphanumeric panel and enclosure.
- The CFX9000 product uses the term High Overload $\left(l_{H}\right)$ in place of the term Constant Torque (CT). Likewise, Low Overload (I_{L}) is used in place of the term Variable Torque (VT). The new terms are a more precise description of the rating. The older terms included ambient temperature ratings in addition to overload ratings. In order to minimize enclosure size and offer the highest ambient temperature rating, overload and temperature ratings are now treated separately. Ambient temperature ratings are shown in the following table.

Ambien		
Temperature Ratings		
Enclosure Size	I_{H}	IL
B, C, 9 (1)	40°	$40^{\circ} \mathrm{C}$
7,8	$50^{\circ} \mathrm{C}$	50°
- If dyn or con option the base - All of exactly stand - Selec Add t to the in alp order	brak comm esire riate g nu rogra sam VX90 losed des cata ical a	hopper nication change de in the er. ming is as the drive. ptions. suffixes number numeric
Note		
(1) For high		

208V Drives

$\overline{\text { CFX9000 Drive }}$ UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Filtered

hp	NEC Current (A)	Chassis Frame	ULType 1 Base Catalog Number
Low Overload Drive			
$7-1 / 2$	24.2	FR5	(1)
10	30.8	FR5	(1)
15	46.2	FR6	(1)
20	59.4	FR6	(1)
25	74.8	FR7	(1)
30	88	FR7	(1)
40	114	FR7	(1)
50	143	FR8	CFX05011AA
60	169	FR8	CFX06011AA
75	211	FR8	CFX07511AA
100	273	FR9	CFX10011AA
High Overload Drive			
$7-1 / 2$	24.2	FR5	(1)
10	30.8	FR6	(1)
15	46.2	FR6	(1)
20	59.4	FR7	(1)
25	74.8	FR7	(1)
30	88	FR7	(1)
40	114	FR8	CFX04011DA
50	143	FR8	CFX05011DA
60	169	FR8	CFX06011DA
100	211	FR9	CFX07511DA
	FR9	CFX10011DA	

UL Type 12 and NEMA 12 Filtered Base Catalog Number	UL Type 3R Base Catalog Number
CFX00721BA	CFX00731BA
CFX01021BA	CFX01031BA
CFX01521BA	CFX01531BA
CFX02021BA	CFX02031BA
CFX02521AA	CFX02531AA
CFX03021AA	CFX03031AA
CFX04021AA	CFX04031AA
CFX05061AA	CFX05031AA
CFX06061AA	CFX06031AA
CFX07561AA	CFX07531AA
CFX10061AA	CFX10031AA
CFX00721EA	CFX00731EA
CFX01021EA	CFX01031EA
CFX01521EA	CFX01531EA
CFX02021DA	CFX02031DA
CFX02521DA	CFX02531DA
CFX03021DA	CFX03031DA
CFX04061DA	CFX04031DA
CFX05061DA	CFX05031DA
CFX06061DA	CFX06031DA
CFX07561DA	CFX07531DA
CFX10061DA	CFX10031DA

CFX9000 Enclosure

| Chassis
 Frame | UL Type 1
 Disconnect Only | With Power Options | | UL Type 12
 Disconnect Only | With Power Options |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Enclosure Dimension Drawings

Enclosure Size	UL Type 1 and UL Type 12	UL Type 3R
B	See Page V6-T2-183	See Page V6-T2-185
C	See Page V6-T2-184	See Page V6-T2-186
D	N/A	See Page V6-T2-187
F	N/A	See Page V6-T2-188
$7{ }^{(2)}$	See Page V6-T2-189	(3)
$8{ }^{(2)}$	See Page V6-T2-190	(3)
9	See Page V6-T2-191	(3)

Notes

(1) FR5-FR7 drives not available in UL Type 1
(2) Enclosures 7 and 8 are NEMA 12 filtered.
(3) Not available for UL Type 3R.

230V Drives

UL Type 1, UL Type 12, UL Type 3R and NEMA 12 Filtered

	hp	NEC Current (A)	Chassis Frame	UL Type 1 Base Catalog Number
	Low Overload Drive			
	7-1/2	22	FR5	(1)
	10	28	FR5	(1)
	15	42	FR6	(1)
	20	54	FR6	(1)
	25	68	FR7	(1)
	30	80	FR7	(1)
	40	104	FR7	(1)
	50	130	FR8	CFX05012AA
	60	154	FR8	CFX06012AA
	75	192	FR8	CFX07512AA
	100	248	FR9	CFX10012AA
	High Overload Drive			
	7-1/2	22	FR5	(1)
	10	28	FR6	(1)
	15	42	FR6	(1)
	20	54	FR7	(1)
	25	68	FR7	(1)
	30	80	FR7	(1)
	40	104	FR8	CFX04012DA
	50	130	FR8	CFX05012DA
	60	154	FR8	CFX06012DA
	75	192	FR9	CFX07512DA
	100	248	FR9	CFX10012DA

UL Type 12 and NEMA 12 Filtered Base Catalog Number	UL Type 3R Base Catalog Number
CFX00722BA	CFX00732BA
CFX01022BA	CFX01032BA
CFX01522BA	CFX01532BA
CFX02022BA	CFX02032BA
CFX02522AA	CFX02532AA
CFX03022AA	CFX03032AA
CFX04022AA	CFX04032AA
CFX05062AA	CFX05032AA
CFX06062AA	CFX06032AA
CFX07562AA	CFX07532AA
CFX10062AA	CFX10032AA
CFX00722EA	CFX00732EA
CFX01022EA	CFX01032EA
CFX01522EA	CFX01532EA
CFX02022DA	CFX02032DA
CFX02522DA	CFX02532DA
CFX03022DA	CFX03032DA
CFX04062DA	CFX04032DA
CFX05062DA	CFX05032DA
CFX06062DA	CFX06032DA
CFX07562DA	CFX07532DA
CFX10062DA	CFX10032DA

Chassis Frame	UL Type 1 Disconnect Only	With Power Options	UL Type 12 Disconnect Only	With Power Options	UL Type 3R Disconnect Only	With Power Options
FR4	N/A	N/A	B	C	B	C
FR5	N/A	N/A	B	C	B	C
FR6	N/A	N/A	B	C	B	C
FR7	N/A	7	C	7	C	D
FR8	7	7	7	7	F	F
FR9	8	8	8	8	F	F

Enclosure Dimension Drawings

Notes

(1) FR5-FR7 drives not available in UL Type 1
(2) Enclosures 7 and 8 are NEMA 12 filtered.
(3) Not available for UL Type 3R.

480V Drives

CFX9000 Base Drive

hp	NEC Current (A)	Chassis Frame	UL Type 1 Base Catalog Number
Low Overload Drive			
7-1/2	11	FR4	(2)
10	14	FR5	(2)
15	21	FR5	(2)
20	27	FR5	(2)
25	34	FR6	(2)
30	40	FR6	(2)
40	52	FR6	(2)
50	65	FR7	CFX05014AA ${ }^{3}$
60	77	FR7	CFX06014AA ${ }^{\text {3 }}$
75	96	FR7	CFX07514AA ${ }^{\text {8 }}$
100	124	FR8	CFX10014AA
125	156	FR8	CFX12514AA
150	180	FR8	CFX15014AA
200	240	FR9	CFX20014AA
250	302	FR9	CFX25014AA
300	361	FR10	CFX30014AA
350	414	FR10	CFX35014AA
400	477	FR10	CFX40014AA
High Overload Drive			
7-1/2	11	FR5	(2)
10	14	FR5	(2)
15	21	FR5	(2)
20	27	FR6	(2)
25	34	FR6	(2)
30	40	FR6	(2)
40	52	FR7	CFX04014DA ${ }^{\text {3 }}$
50	65	FR7	CFX05014DA ${ }^{3}$
60	77	FR7	CFX06014DA ${ }^{3}$
75	96	FR8	CFX07514DA
100	124	FR8	CFX10014DA
125	156	FR8	CFX12514DA
150	180	FR9	CFX15014DA
200	240	FR9	CFX20014DA
250	302	FR10	CFX25014DA
300	361	FR10	CFX30014DA
350	414	FR10	CFX35014DA

ULType 12 and NEMA 12 Filtered
Base Catalog Number ${ }^{\text {a }}$
CFX00724BA
CFX01024BA
CFX01524BA
CFX02024BA
CFX02524BA
CFX03024BA
CFX04024BA
CFX05024AA
CFX06024AA
CFX07524AA
CFX10064AA
CFX12564AA
CFX15064AA
CFX20064AA
CFX25064AA
CFX30064AA
CFX35064AA
CFX40064AA
CFX00724EA
CFX01024EA
CFX01524EA
CFX02024EA
CFX02524EA
CFX03024EA
CFX04024DA
CFX05024DA
CFX06024DA
CFX07564DA
CFX10064DA
CFX12564DA
CFX15064DA
CFX20064DA
CFX25064DA
CFX30064DA
CFX35064DA

UL Type 3R
Base Catalog Number (1)

CFx00734BA
CFX01034BA
CFX01534BA
CFX02034BA
CFX02534BA
CFX03034BA
CFX04034BA
CFX05034AA
CFX06034AA
CFX07534AA
CFX10034AA
CFX12534AA
CFX15034AA
CFX20034AA
CFX25034AA
(4)
(4)
(4)

(4)
(4)
(4)

CFX00734EA
CFX01034EA
CFX01534EA
CFX02034EA
CFX02534EA
CFX03034EA
CFX04034DA
CFX05034DA
CFX06034DA
CEX07534DA
CEX10034DA
CFX12534DA
CFX15034DA
CEX20034DA

Notes

(1) The integrated filter clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.
(2) FR4-FR6 drives not available in UL Type 1.
(3) This catalog number is used only with power options.
${ }^{4}$ Consult factory.

Adjustable Frequency Drives

CFX9000 Enclosure

| Chassis
 Frame | UL Type 1
 Disconnect Only | With Power Options | | UL Type 12
 Disconnect Only | With Power Options |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Enclosure Dimension Drawings

Enclosure Size	UL Type 1 and UL Type 12	UL Type 3R
B	See Page V6-T2-183	See Page V6-T2-185
C	See Page V6-T2-184	See Page V6-T2-186
D	N/A	See Page V6-T2-187
F	N/A	See Page V6-T2-188
$7{ }^{(2)}$	See Page V6-T2-189	(3)
$8{ }^{(2)}$	See Page V6-T2-190	(3)
9	See Page V6-T2-191	(3)

Notes

(1) Consult factory.
(2) Enclosures 7 and 8 are NEMA 12 filtered.
(3) Not available for UL Type 3R.

575V Drives

CFX9000 Drive

hp	NEC Current (A)	Chassis Frame	UL Type 1 Base Catalog Number
Low Overload Drive			
15	17	FR6	(1)
20	22	FR6	(1)
25	27	FR6	(1)
30	32	FR6	(1)
40	41	FR7	(1)
50	52	FR7	(1)
60	62	FR8	CFX06015AA
75	77	FR8	CFX07515AA
100	99	FR8	CFX10015AA
125	125	FR9	CFX12515AA
150	144	FR9	CFX15015AA
200	192	FR9	CFX20015AA
250	242	FR10	CFX25015AA
300	289	FR10	CFX30015AA
400	382	FR10	CFX40015AA
High Overload Drive			
10	14	FR6	(1)
15	17	FR6	(1)
20	22	FR6	(1)
25	27	FR6	(1)
30	32	FR7	(1)
40	41	FR7	(1)
50	52	FR8	CFX05015DA
60	62	FR8	CFX06015DA
75	77	FR8	CFX07515DA
100	99	FR9	CFX10015DA
125	125	FR9	CFX12515DA
150	144	FR9	CFX15015DA
200	192	FR10	CFX20015DA
250	242	FR10	CFX25015DA
300	289	FR10	CFX30015DA

UL Type 12 and NEMA 12 Filtered Base Catalog Number	UL Type 3R Base Catalog Number
CFX01525AA	CFX01535AA
CFX02025AA	CFX02035AA
CFX02525AA	CFX02535AA
CFX03025AA	CFX03035AA
CFX04025AA	CFX04035AA
CFX05025AA	CFX05035AA
CFX06065AA	CFX06035AA
CFX07565AA	CFX07535AA
CFX10065AA	CFX10035AA
CFX12565AA	CFX12535AA
CFX15065AA	CFX15035AA
CFX20065AA	CFX20035AA
CFX25065AA	(2)
CFX30065AA	(2)
CFX40065AA	(2)
CFX01025DA	CFX01035DA
CFX01525DA	CFX01535DA
CFX02025DA	CFX02035DA
CFX02525DA	CFX02535DA
CFX03025DA	CFX03035DA
CFX04025DA	CFX04035DA
CFX05065DA	CFX05035DA
CFX06065DA	CFX06035DA
CFX07565DA	CFX07535DA
CFX10065DA	CFX10035DA
CFX12565DA	CFX12535DA
CFX15065DA	CFX15035DA
CFX20065DA	(2)
CFX25065DA	(2)
CFX30065DA	(2)

Notes

(1) FR6-FR7 drives not available in UL Type 1.
(2) Consult factory

Adjustable Frequency Drives

CFX9000 Enclosure

Chassis Frame	UL Type 1 Disconnect Only	With Power Options	UL Type 12 Disconnect Only	With Power Options	UL Type 3R Disconnect Only	With Power Options
FR6	N/A	N/A	B	C	B	C
FR7	N/A	7	C	7	C	D
FR8	7	7	7	7	F	F
FR9	8	8	8	8	F	F
FR10	9	9	9	9	(1)	(1)

Enclosure Dimension Drawings
Enclosure

Size	UL Type 1 and UL Type 12	UL Type 3R
B	See Page V6-T2-183	See Page V6-T2-185
C	See Page V6-T2-184	See Page V6-T2-186
D	N/A	See Page V6-T2-187
F	N/A	See Page V6-T2-188
$7{ }^{(2)}$	See Page V6-T2-189	(3)
$8{ }^{(2)}$	See Page V6-T2-190	(3)
9	See Page V6-T2-191	(3)

Notes

(1) Consult factory.
(2) Enclosures 7 and 8 are NEMA 12 filtered.
(3) Not available for UL Type 3R.

Options

CFX9000 Series Option Board Kits

The CFX9000 Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.

The CFX9000 Series factory-installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Boards	Option Board Kits										
			Field Installed	Factory Installed	SVX Ready Programs						
	Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{(2)}$	Catalog Number	Option Designator	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
	Standard I/O Cards										
	2 RO (NC/NO)	B	OPTA2	-	\square	\square	\square	-	\square	\square	\square
	6 DI, 1 DO, 2 AI, 1AO, $1+10 \mathrm{Vdc}$ ref, $2 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{ext}+24 \mathrm{Vdc}$	A	OPTA9	-	■	■	-	-	■	-	-
	Extended I/O Cards										
	6 DI	B, C, D, E	OPTB1	B1	-	-	-	-	-	-	\square
	1 RO (NC/NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	\square
	1 Al (mA isolated), 2 AO (mA isolated)	B, C, D, E	OPTB4	B4	\square	\square	\square	-	-	-	\square
	3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	-	\square
	3 Pt100 RTD board	B, C, D, E	OPTB8	B8	-	-	-	-	-	\square	-
	1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	-	-
	Communication Cards ${ }^{(3)}$										
	Modbus	D, E	OPTC2	C2	\square	\square	-	\square	\square	\square	\square
	Modbus TCP	D, E	OPTCI	CI	\square	\square	-	-	\square	\square	\square
	BACnet	D, E	OPTCJ	CJ	\square	\square	-	\square	\square	\square	\square
	Ethernet IP	D, E	OPTCK	CK	\square	\square	-	\square	\square	\square	\square
	Johnson Controls N2	D, E	OPTC2	CA	\square	\square	-	-	\square	-	\square
	PROFIBUS DP	D, E	OPTC3	C3	\square	\square	\square	-	-	-	-
	LonWorks	D, E	OPTC4	C4	-	\square	-	\square	\square	\square	\square
	PROFIBUS DP (D9 connector)	D, E	OPTC5	C5	\square						
	CANopen (slave)	D, E	OPTC6	C6	\square						
	DeviceNet	D, E	OPTC7	C7	\square	\square	-	\square	\square	-	\square
	Modbus (D9 type connector)	D, E	OPTC8	C8	\square	\square	\square	-	\square	\square	\square
	RS-232 with D9 connection	D, E	OPTD3	D3	-	-	\square	-	-	-	■

Notes

(1) AI = Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, RO = Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19,200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

PROFIBUS Network Communications

The PROFIBUS Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a PROFIBUS-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CANopen (Slave)
 Communications

The CANopen (Slave)
Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO® 11898 standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{as} / \mathrm{m}$. 120 ohm line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125K baud, 250K baud and 500 K baud.

Johnson Controls Metasys N2

 Network CommunicationsThe OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }} \mathrm{N} 2$ network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory-installed option and as a field-installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks using Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network
 Communications

The BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1 to 127 .

Ethernet/IP Network

 CommunicationsThe Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is "Common Industrial Protocol," the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Control/Communication Option Descriptions

Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer-Provides the drive with the ability to adjust the frequency reference using a door-mounted potentiometer. This option uses the 10 Vdc reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the HAND position. Without the HOA bypass option, a two-position switch (labeled local/remote) is provided on the keypad to select speed reference from the speed potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch—Provides the drive with the ability to start/stop and adjust the speed reference from doormounted control devices or remotely from customer supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and 4-20 mA signal.	Control
K3	3-15 psig Follower-Provides a pneumatic transducer which converts a 3-15 psig pneumatic signal to either 0-8 Vdc or a 1-9 Vdc signal interface with the drive. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via $6 \mathrm{ft}(1.8 \mathrm{~m})$ of flexible tubing and a $1 / 4$ in $(6.4 \mathrm{~mm})$ brass tube union.	Control
K4	HAND/OFF/AUTO Switch for Non-Bypass Configurations-Provides a three-position selector switch that allows the user to select either a HAND or AUTO mode of operation. HAND mode is defaulted to keypad operation, and AUTO mode is defaulted to control from an external terminal source. These modes of operation can be configured via drive programming to allow for alternate combinations of start and speed sources. Start and speed sources include keypad, I / O and fieldbus.	Control
K5	MANUAL/AUTO Speed Reference Switch—Provides door-mounted selector switch for MANUAL/AUTO speed reference.	Control
K6	START/STOP Pushbuttons-Provide door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KF	Bypass Test Switch for RB and RA—Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The Test Switch is mounted on the inside of the enclosure door.	Addl. bypass
K0	Standard Elapsed Time Meter-Provides a door-mounted elapsed run time meter.	Control
L1	Power On, Run and Fault Lights—Provide a white power on light that indicates power to the enclosed cabinets, a green run light and a red fault light that indicates a drive fault has occurred.	Light
L2	Bypass Pilot Lights for RB, RA Bypass Options-A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. bypass
LE	Red Run Pilot Light ($\mathbf{2 2} \mathbf{~ m m) - P r o v i d e s ~ a ~ r e d ~ r u n ~ p i l o t ~ l i g h t ~ t h a t ~ i n d i c a t e s ~ t h e ~ d r i v e ~ i s ~ r u n n i n g . ~}$	Light
P1	Input Circuit Breaker-High interrupting circuit breaker that provides a means of short-circuit protection for the power cables between it and the CPX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the CPX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure. Standard rating is 65 kAIC at 208/480V. 100 kAIC is available as an option.	Input
P3	Input Line Fuses Rated to $\mathbf{2 0 0} \mathbf{~ k A I C}$-Provide high-level fault protection of the drive input power circuit from the load side of the fuses to the input side of the power transistors. This option consists of three 200 kA fuses, which are factory mounted in the enclosure.	Input
P7	MOV Surge Suppressor-Provides a Metal Oxide Varistor (MOV) connected to the line side terminals and is designed to clip line side transients.	Input
P8	TVSS Surge Protective Device with 50 kA Rating-Provides transient voltage protection eliminating surges and spikes which can damage the diode bridge of the drive.	Input
PC	Capacitor Contactor-This option provides a contactor between the tuned reactor and capacitor to disconnect the capacitor from the circuit when desired, typically at light or no load conditions. This contactor is wired to a programmable relay output.	Input
$\overline{\text { PE }}$	Output Contactor-Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NO auxiliary contacts rated at 10A, 600 Vac are provided for customer use. Bypass options $\mathbf{R B}$ and $\mathbf{R A}$ include an output contactor as standard. This option includes a low VA 115 Vac fused control power transformer and is factory mounted in the enclosure.	Output
PF	Output Filter-Used to reduce the transient voltage (DV/DT) at the motor terminals. The output filter is recommended for cable lengths exceeding $100 \mathrm{ft}(30 \mathrm{~m})$ or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure, and may be used in conjunction with a brake chopper circuit.	Output
PG	MotoRx ($\mathbf{3 0 0} \mathbf{- 6 0 0} \mathbf{f t}$) $\mathbf{1 0 0 0} \mathbf{~ V / 4 S ~ D V / D T ~ F i l t e r — U s e d ~ t o ~ r e d u c e ~ t r a n s i e n t ~ v o l t a g e ~ (D V / D T) ~ a n d ~ p e a k ~ v o l t a g e s ~ a t ~ t h e ~ m o t o r ~ t e r m i n a l s . ~ T h i s ~ o p t i o n ~ i s ~ c o m p r i s e d ~ o f ~ a ~} 0.5 \%$ line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the output filter (see option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600 \mathrm{ft}(91-183 \mathrm{~m})$. This option cannot be used with the brake chopper circuit. The output filter (option PF) should be investigated as an alternative.	Output
PH	Single Overload Relay-Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the bypass configurations for overload current protection in the bypass mode. The overload relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output
PI	Dual Overload Relays-This option is recommended when a single drive is operating two motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass-This option is recommended when a single drive is operating two motors in the bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. bypass

Available Control/Communications Options, continued

Option	Description	Option Type
RA	Manual HOA Bypass Controller-The manual HAND/OFF/AUTO (HOA)-three-contactor-bypass option provides a means of bypassing the CFX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-182).	
RB	Manual IOB Bypass Controller-The manual INVERTER/OFF/BYPASS (IOB)--three-contactor-bypass option provides a means of bypassing the CFX9000, allowing the AC motor to be operated at full speed directly from the AC suply line. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted IOB selector switch. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-182).	
Bypass		

Enclosed Drive Options

Conformal (Varnished) Coating (1)

Chassis Frame	Delivery Code		Chassis Frame	Delivery Codery
FR6	FP		FR9	FP
FR7	FP		FR10	FP
FR8	FP			FR11
-	-		FR12	FP

Light Options

Description	Catalog Number Suffix
Power on, run, fault LED lights $(22 \mathrm{~mm})$	L1
Power on, fault LED lights $(22 \mathrm{~mm})$	L3
Green LED run light $(22 \mathrm{~mm})$	LA
Green LED stop light $(22 \mathrm{~mm})$	LD
Red LED run light $(22 \mathrm{~mm})$	LE
Red LED stop light $(22 \mathrm{~mm})$	LF
Red LED fault light $(22 \mathrm{~mm})$	LG
Power on white LED light $(22 \mathrm{~mm})$	LJ
Miscellaneous LED light $(22 \mathrm{~mm})$	LU

Control Options

Description	Catalog Number Suffix
Door-mounted speed potentiometer	K1
Door-mounted speed potentiometer with HOA selector switch	K2
$3-15$ psig follower	K3
H0A selector switch	K4
MANUAL/AUTO reference switch	K5
START-STOP pushbuttons	K6
Type D2 control relay	SD
On-delay relay	SE
Off-delay relay	SF
Additional terminal blocks per 4 points	SD

Note
(1) See catalog number description to order.

Bypass Control Options	Catalog Number Suffix
Description	KF
Bypass test switch used with RA and RB	L2
Inverter/bypass pilot lights	
Meter Options	Catalog Number Suffix
Description	K0
Standard elapsed time meter	KS
Frequency meter	KV
MP-3000 relay with URTD	KU
MP-3000 relay with URTD and CTs	
Enclosure Options	Catalog
Enclosure	Number Suffix
Size	
Space Heater ${ }^{1}$	S9
7	S9
8	S9
9	S9
B	S9
C	S9
D	S9
F	
Plastic Nameplate	SN
22 in floor stand, size B and C	
12 in floor stand, size C and D	

208V Power Options, 7-1/2-100 hp

Description	Catalog Number Suffix
Input breaker	P1
Input line fusing	P2
Input line fuses 200 kAIC	P3
Output contactor	PE
Single overload relay	PH
Dual overload relays	PI
MOV	P7
50 kA surge protective device	P8
100 kA surge protective device	P9

230V Power Options, 7-1/2-125 hp

Description	Catalog Number Suffix
Input breaker	P1
Input line fusing	P2
Input line fuses 200 kAIC	P3
Output contactor	PE
Single overload relay	PH
Dual overload relays	PI
MOV	P7
50 kA surge protective device	P8
100 kA surge protective device	P9

480 and 575V Power Options, 7-1/2-400 hp

Description	Catalog Number Suffix
Input breaker	P1
Input line fusing	P2
Input line fuses 200 kAIC	P3
Output contactor	PE
Output filter	PF
MotoRx (300-600 ft) DV/DT filter	PG
Single overload relay	PH
Dual overload relays	PI
Input MOV	P7
50 kA surge protective device	P8
100 kA surge protective device	P9

208V Bypass Options, 7-1/2-100 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

230V Bypass Options, 7-1/2-125 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

480 and 575V Bypass Options, 7-1/2-400 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

Note
(1) Requires customer-supplied 115 Vac supply

Adjustable Frequency Drives

CFX9000 Drives

Technical Data and Specifications

2 CFX9000 Drives

Description	Specification
Primary Design Features	
45-66 Hz input frequency	Standard
Output: AC volts maximum	Input Voltage Base
Output frequency range	$0-320 \mathrm{~Hz}$
Initial output current (IH)	250% for 2 seconds
Overload (1 minute [I/ILI)	150\%/110\%
Enclosure space heater	Optional
Oversize enclosure	Standard
Output contactor	Optional
Bypass motor starter	Optional
Listings	UL, cUL, 508C
Protection Features	
Incoming line fuses	Optional
AC input circuit disconnect	Optional
Phase rotation insensitive	Standard
EMI filter	Standard-FR6 thru FR9 © 1
Input phase loss protection	Standard
Input overvoltage protection	Standard
Line surge protection	Standard
Output short circuit protection	Standard
Output ground fault protection	Standard
Output phase protection	Standard
Overtemperature protection	Standard
DC overvoltage protection	Standard
Drive overload protection	Standard
Motor overload protection	Standard
Programmer software	Optional
Local/remote keypad	Standard
Keypad lockout	Standard
Fault alarm output	Standard
Built-in diagnostics	Surge protective device

Description	Specification
Input/Output Interface Features	
Setup adjustment provisions	
Remote keypad/display	Standard
Personal computer	Standard
Operator control provisions	
Drive mounted keypad/display	Standard
Remote keypad/display	Standard
Conventional control elements	Standard
Serial communications	Optional
115 Vac control circuit	Optional
Speed setting inputs	
Keypad	Standard
$0-10 \mathrm{Vdc}$ potentiometer/voltage signal	Standard
4-20 mA isolated	Configurable
4-20 mA differential	Configurable
3-15 psig	Optional
Analog outputs	
Speed/frequency	Standard
Torque/load/current	Programmable
Motor voltage	Programmable
Kilowatts	Programmable
$0-10 \mathrm{Vdc}$ signals	Configurable w/jumpers
4-20 mA DC signals	Standard
Isolated signals	Optional
Discrete outputs	
Fault alarm	Standard
Drive running	Standard
Drive at set speed	Programmable
Optional parameters	14
Dry contacts	2 relays Form C
Open collector outputs	1
Additional discrete outputs	Optional
Communications	
RS-232	Standard
RS-422/485	Optional
DeviceNet ${ }^{\text {™ }}$	Optional
Modbus RTU	Optional
CanOpen (slave)	Optional
Profibus-DP	Optional
Lonworks ${ }^{\text {® }}$	Optional
Johnson Controls Metasys ${ }^{\text {TM }}$ N2	Optional
Ethernet IP/Modbus TCP	Optional
BACnet	Optional
Note	
(1) The EMI filter is optional in FR10.	

CFX9000 Drives, continued

Description	Specification
Performance Features	
Sensorless vector control	Standard
Volts/hertz control	Standard
\|R and slip compensation	Standard
Electronic reversing	Standard
Dynamic braking	Optional
DC braking	Standard
PID setpoint controller	Programmable
Critical speed lockout	Standard
Current (torque) limit	Standard
Adjustable acceleration/deceleration	Standard
Linear or S curve accel/decel	Standard
Jog at preset speed	Standard
Thread/preset speeds	7
Automatic restart	Selectable
Coasting motor start	Standard
Coast or ramp stop selection	Standard
Elapsed time meter	Optional
Standard Conditions for Application and Service	
Maximum operating ambient temperature 0 to $40^{\circ} \mathrm{C}$, contact factory for $50^{\circ} \mathrm{C}$ (1)	
Storage temperature	-40 to $60^{\circ} \mathrm{C}$
Humidity (maximum), non-condensing	95%
Altitude	$100 \% ~ l o a d ~ c a p a c i t y ~(n o ~ d e r a t i n g) ~ u p ~ t o ~$
	$3280 \mathrm{ft}(1000 \mathrm{~m}) ;$
1% derating for each $328 \mathrm{ft}(100 \mathrm{~m})$ above	
Line voltage variation	$3280 \mathrm{ft}(1000 \mathrm{~m}) ;$ max. $9842 \mathrm{ft}(3000 \mathrm{~m})$
Line frequency variation	$+10 /-15 \%$
Efficiency	$45-66 \mathrm{~Hz}$
Power factor (displacement)	0.99%

Standard I/O Specifications

Description	Specification
Six-digital input programmable	$24 \mathrm{~V}:$ " 0 " $\leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5 \mathrm{kohms}$
Two-analog input configurable $\mathrm{w} /$ jumpers	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200$ kohms Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250 \mathrm{kohms}$
Two-digital output programmable	Form C relays 250 Vac or 30 Vdc 2 Amp resistive
One-digital output programmable	Open collector 48 Vdc 50 mA
One-analog output programmable configurable w/jumper	$0-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}$ max. 500 ohms 10 bits $\pm 2 \%$

I/O Specifications for Control/Communication Options

Description	Specification
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200$ kilohms
Analog current, input	0 (4)-20 mA, $\mathrm{B}_{\mathrm{i}}=250$ ohms
Digital input	24 V : "0" $\leq 10 \mathrm{~V},{ }^{\prime \prime} 1$ " $\geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5$ kilohms
Auxiliary voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output	0 (4)- $20 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=500$ kilohms, resolution 10 bit, accuracy $\leq+2 \%$
Analog voltage, output	0 (2)-10V, $\mathrm{R}_{\mathrm{L}} \geq 1$ kohm, resolution 10 bit, accuracy $\leq+2 \%$
Relay output max. switching voltage	$300 \mathrm{Vdc}, 250 \mathrm{Vac}$
Relay output max. switching load	$3 \mathrm{~A} / 24 \mathrm{Vdc}, 300 \mathrm{Vdc}, 250 \mathrm{Vac}{ }^{(2)}$
Relay output max. continuous load	2 Arms
Thermistor input	Rtrip $=4.7$ kohms

Notes

(1) Units FR10 rated $40^{\circ} \mathrm{C}$.
(2) For applications above 3 A consult instruction manual.

Adjustable Frequency Drives

CFX9000 Drives

Wiring Diagram

Control Input/Output

Dimensions

Approximate Dimensions in Inches (mm)
Enclosure Size B-UL Type 12

Adjustable Frequency Drives

CFX9000 Drives

Approximate Dimensions in Inches (mm)
Enclosure Size C-UL Type 12
2

| | | | | | | Approximate
 Weight | Approximate
 Shipping Weight |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Lbs $(\mathbf{k g})$ | | | | | | | |

Approximate Dimensions in Inches (mm)
Enclosure Size B-UL Type 3R

H	H1	H2	H3	W	W1	W2	W3	D	D1	D2	Approximate Weight Lbs (kg)	Approximate Shipping Weight Lbs (kg)
$\begin{aligned} & 46.09 \\ & (1170.7) \end{aligned}$	$\begin{aligned} & 44.45 \\ & (1129.0) \end{aligned}$	$\begin{aligned} & 42.77 \\ & (1086.4) \end{aligned}$	$\begin{aligned} & 36.35 \\ & \text { (923.3) } \end{aligned}$	$\begin{aligned} & 26.31 \\ & (668.3) \end{aligned}$	$\begin{aligned} & 20.92 \\ & (531.4) \end{aligned}$	$\begin{aligned} & 19.30 \\ & (490.2) \end{aligned}$	$\begin{aligned} & 2.69 \\ & (68.3) \end{aligned}$	$\begin{aligned} & 17.74 \\ & (450.6) \end{aligned}$	$\begin{aligned} & 16.76 \\ & (425.7) \end{aligned}$	$\begin{aligned} & 3.31 \\ & (840.1) \end{aligned}$	235 (107)	290 (132)

Approximate Dimensions in Inches (mm)
Enclosure Size C-UL Type 3R

Approximate Dimensions in Inches (mm)

Enclosure Size D-UL Type 3R

H	H1	w	W1	W2	D	D1	Approximate Shipping Weight Lbs (kg)
76.27	96.00	30.92	37.73	29.30	16.76	17.74	$1000(454)$
(1937.3)	(2438.4)	(784.4)	(958.3)	(744.2)	(424.7)	(450.6)	

Note
Shown with optional floor stands.

Adjustable Frequency Drives

Approximate Dimensions in Inches (mm)

Enclosure Size F

	H1	W	W1	D	D1	Approximate Weight Lbs $(\mathbf{k g})$	Approximate Shipping Weight Lbs (kg)
H	H1				$1850(839)$		
93.58	69.51	60.00	48.00	37.50	26.00	$1700(771)$	
(2376.9)	(1765.60)	(1524.0)	(1219.2)	$1952.5)$	(660.4)		

Approximate Dimensions in Inches (mm)
Enclosure Size 7

Approximate Dimensions in Inches (mm)
Enclosure Size 8

Approximate Dimensions in Inches (mm)
Enclosure Size 9

Adjustable Frequency Drives
CPX9000 Drives

Contents

Description

Page

CPX9000 Enclosed Clean Power Drives

Application Description	V6-T2-193
Features and Benefits	V6-T2-198
Catalog Number Selection	V6-T2-199
Product Selection	V6-T2-200
Options	V6-T2-208
Technical Data and Specifications	V6-T2-214
Wiring Diagrams	V6-T2-216
Dimensions	V6-T2-217

Application Description
V6-T2-193
Features and Benefits V6-T2-199
Product SelectionV6-T2-208Wiring DiagramsV6-T2-217

Product Description

Eaton's CPX9000 clean power drives use advanced 18-pulse clean power technology that significantly reduces line harmonics at the drive input terminals, resulting in one of the purest sinusoidal waveforms available.

The CPX9000 drive also delivers True Power Factorin addition to reducing harmonic distortion, the CPX9000 drive prevents upstream transformer overheating and overloading of breakers and feeders, enabling the application of adjustable frequency drives on generators and other high impedance power systems.

All 9000X Series drives are constant torque rated and rated for either high overload (I_{H}) or low overload (I_{L}). I_{H} indicates 150% overload capacity for 1 minute out of 10 minutes. IL indicates 110\% overload capacity for 1 minute out of 10 minutes.

CPX9000 Enclosed Products

- Standard Enclosedcovers a wide range of the most commonly ordered options. Pre-engineering eliminates the lead time normally associated with customer specific options. Available configurations are listed on Pages
V6-T2-199 and V6-T2-208 to V6-T2-213.
- Modified Standard Enclosed-applies to specific customer requirements that vary from the Standard Enclosed offering, such as the need for an additional indicating light or minor modifications to drawings. Contact your local sales office for assistance in pricing and lead time.
- Custom Engineeredfor those applications with more unique or complex requirements, these are individually engineered to the customer's needs. Contact your local sales office for assistance in pricing and lead time.

Application Description

Designed to exceed the IEEE ${ }^{\circledR}$ 519-1992 requirements for harmonic distortion, the CPX9000 is the clear choice

What Are Harmonics?

Take a perfect wave with a fundamental frequency of 60 Hz , which is close to what is supplied by the power company.
Perfect Wave

Add a second wave that is five times the fundamental frequency300 Hz (typical of frequency added to the line by a fluorescent light).
Second Wave

Combine the two waves. The result is a $\mathbf{6 0 ~ H z ~ s u p p l y ~ r i c h ~ i n ~}$ fifth harmonics.
Resulting Supply

What Causes Harmonics?

Harmonics are the result of nonlinear loads that convert $A C$ line voltage to $D C$.
Examples of equipment that are non-linear loads are listed below:

- AC variable frequency drives
- DC drives
- Fluorescence lighting, computers, UPS systems
- Industrial washing machines, punch presses, welders, etc.

How Can Harmonics Due to

 VFDs Be Diminished?By purchasing Eaton's 18-pulse CPX9000 drive that is guaranteed to meet IEEE Std. 519-1992 Harmonic Distortion Limits.

What Are Linear Loads?

Linear loads are primarily devices that run across the line and do not add harmonics. Motors are prime examples. The downside to having large motor linear loads is that they draw more energy than a VFD, because of their inability to control motor speed. In most applications, there is a turn down valve used with the motor that will reduce the flow of the material, without significantly reducing the load to the motor. While this provides some measure of speed control, it is extremely inefficient.

Why Be Concerned About Harmonics?

1. Installation and utility costs increase.
Harmonics cause damage to transformers and lower efficiencies due to the IR loss. These losses can become significant and can have a dramatic effect on the HVAC systems that are controlling the temperatures of the building where the transformer and drive equipment reside.
2. Downtime and loss of productivity. Telephones and data transmissions links may not be guaranteed to work on the same power grids polluted with harmonics.
3. Downtime and nuisance trips of drives and other equipment. Emergency generators have up to three times the impedance that is found in a conventional utility source. Thus the harmonic voltage distortion can be up to three times as large, causing risk of operation problems.
4. Larger motors must be used. Motors running across the line that are connected on polluted power distribution grids can overheat or operate at lower efficiency due to harmonics.
5. Higher installation costs. Transformers and power equipment must be oversized to accommodate the loss of efficiencies. This is due to the harmonic currents circulating through the distribution without performing useful work.

How Does a VFD Convert Three-Phase AC to a Variable Output Voltage and Frequency?

The six-pulse VFD: The majority of all conventional drives that are built consist of a six-pulse configuration. The figure below represents a six-diode rectifier design that converts three-phase utility power to DC. The inverter section uses IGBTs to convert DC power to a simulated AC sine wave that can vary in frequency from $0-320 \mathrm{~Hz}$.

Six-Diode Rectifier Design

500 hp Six-Pulse Nonproductive Harmonic Current

500 hp Six-Pulse Nonproductive Harmonic Current
Six-Pulse Circuit

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=6.10 \%$	$\mathrm{I}_{19}=1.77 \%$
$\mathrm{I}_{5}=22.5 \%$	$\mathrm{I}_{13}=4.06 \%$	$\mathrm{I}_{23}=1.12 \%$
$\mathrm{I}_{7}=9.38 \%$	$\mathrm{I}_{17}=2.26 \%$	$\mathrm{I}_{25}=0.86 \%$
Power $=500 \mathrm{hp}$		
Harmonic current $=167 \mathrm{amps}$		

Guidelines of Meeting IEEE Std. 519-1992 Harmonic Distortion Limits

The IEEE 519-1992
Specification is a standard that provides guidelines for commercial and industrial
users that are implementing medium and low voltage equipment.

Maximum Harmonic Current Distortion in \% of the Fundamental (120V through 69,000V)

$\mathbf{I s c} / \mathbf{l}_{\mathrm{L}}$	Harmonic Order (Odd Harmonics)					
	$\mathrm{h}<11$	$11 \leq h<17$	17<h<23	23<h<35	35<h	TDD
<20	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

The ratio $I s c / I_{L}$ is the ratio of the short-circuit current available at the point of common coupling (PCC), to the maximum fundamental load current. Consequently, as the size of the user load decreases with respect to the size of the system, the percentage of harmonic current that the user is allowed to inject into the utility system increases.

Notes

TDD = Total demand distortion is the harmonic current distortion in percent of the maximum demand load current (15 or 30 minute demand).
$I_{S C}=$ Maximum short circuit current at the PCC not counting motor contribution.
$I_{L}=$ Maximum demand load current for all of the connected loads (fundamental frequency component) at the PCC. All of the limits are measured at a point of common coupling.

One-Line Diagram for Harmonic Analysis

The best way to estimate AFD harmonic contribution to an electrical system is to perform a harmonic analysis based on known system characteristics. The one-line in this figure would provide the data to complete the calculations.

Terms

- PCC (Point of Common Coupling) is defined as the electrical connecting point between the utility and multiple customers per the specifications in IEEE 519
- POA (Point of Analysis) is defined as where the harmonic calculations are taken

An oscilloscope can make all measurements at the PCC or POA do an on-site harmonic evaluation.

Harmonic Reduction Methods to Meet IEEE 519

1. Line Reactor

A line reactor is a three-phase series inductance on the line side of an AFD. If a line reactor is applied on all AFDs, it is possible to meet IEEE guidelines where 10-25\% of system loads are AFDs, depending on the stiffness of the line and the value of line reactance. Line reactors are available in various values of impedance, most typically $1-1.5 \%, 3 \%$ and 5%.

Line Reactor

Advantages

- Low cost
- Can provide moderate reduction in voltage and current harmonics
- Available in various values of impedance
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- May not reduce harmonic levels to below IEEE 5191992 guidelines
- Voltage drop due to IR loss

Adjustable Frequency Drives
CPX9000 Drives

2. 12-Pulse Converters

A 12-pulse converter incorporates two separate AFD input semiconductor bridges, which are fed from 30° phase shifted power sources with identical impedance. The sources may be two isolation transformers, where one is a delta/wye design (which provides the phase shift) and
the second a delta/delta design (which does not phase shift). The 12-pulse arrangement allows the harmonics from the first converter to cancel the harmonics of the second. Up to approximately 85\% reduction of harmonic current and voltage distortion may be achieved (over standard
six-pulse converter). This permits a facility to use a larger percentage of AFD loads under IEEE 519-1992 guidelines than allowable using line reactors or DC chokes. A harmonic analysis is required to guarantee compliance with guidelines.

Basic 12-Pulse Rectifier with "Phase Shifting" Transformer

500 hp 480V Drive with 12-Pulse Rectifier

500 hp 480 V Drive with 12-Pulse Rectifier 12-Pulse Circuit

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=4.19 \%$	$\mathrm{I}_{19}=0.06 \%$
$\mathrm{I}_{5}=1.25 \%$	$\mathrm{I}_{13}=2.95 \%$	$\mathrm{I}_{23}=0.87 \%$
$\mathrm{I}_{7}=0.48 \%$	$\mathrm{I}_{17}=0.21 \%$	$\mathrm{I}_{25}=0.73 \%$
Power $=500 \mathrm{hp}$		
$\mathrm{H}_{\mathrm{c}}=66.2$ amps		
Advantages	Disadvantages	

Advantages

- Moderate cost, although significantly more than reactors or chokes
- Substantial reduction (up to approx. 85\%) in voltage and current harmonics
- Provides increased input protection for AFD and its semiconductors from line transients

Disadvantages

- Impedance matching of phase shifted sources is critical to performance
- Transformers often require separate mounting or larger AFD enclosures
- May not reduce distribution harmonic levels to below
IEEE 519-1992 guidelines
- Cannot retrofit for most AFDs

3. Clean Power Drives

When the total load is of nonlinear, the greatest harmonic mitigation is required. Under these conditions, the currents drawn from the supply need to be sinusoidal and "clean" such that system interference and additional losses are negligible. Eaton's CPX9000 clean power drive uses a phase-shifting auto-transformer with delta-connected winding. Three of the output phases
are advanced and three are retarded. The remaining three phases of this nine-phase supply are in phase with the incoming line. This results in nine separate phases. In this type of configuration, the total required kVA rating of the transformer is only 48% of a drive rate isolation transformer. A traditional isolated transformer system, with multipulse windings, would require the full kVA
rating to be supported, which is more common in an MV step-down transformer.

The integrated 18 -pulse clean power drive, with near sine wave input current and low harmonics will meet the requirements of IEEE 519-1992 under all practical operating conditions. The comparisons with six-pulse and 12 -pulse systems are shown, see Pages
V6-T2-194, V6-T2-196

Basic 18-Pulse Rectifier with Phase Shifting Transformer

500 hp 480 V Drive with 18-Pulse Rectifiers

500 hp 480 V Drive with 18-Pulse Rectifiers
18-Pulse Clean Power

Current harmonics		
$\mathrm{I}_{1}=100 \%$	$\mathrm{I}_{11}=0.24 \%$	$\mathrm{I}_{19}=1.00 \%$
$\mathrm{I}_{5}=0.16 \%$	$\mathrm{I}_{13}=0.10 \%$	$\mathrm{I}_{23}=0.01 \%$
$\mathrm{I}_{7}=0.03 \%$	$\mathrm{I}_{17}=0.86 \%$	$\mathrm{I}_{25}=0.01 \%$
Power $=500$ hp		
$\mathrm{H}_{\mathrm{c}}=24$ amps		
Advantages	Disadvantages	

- Virtually guarantees compliance with IEEE 519-1992
- Provides increased input protection for AFD and its semiconductors from line transients
- Up to four times the harmonic reduction of 12-pulse methods
- Smaller transformer than isolation transformer used in 12-pulse converter

Adjustable Frequency Drives

CPX9000 Drives

Features and Benefits

CPX9000 clean power drive features include:

- Space optimized enclosure
- Simple layout for power options
- Type 1, NEMA 12 with gaskets and filters, Type 3R
- Input voltage: 480V, 208V, 575 V
- Complete range of control, network and power options
- Horsepower range:
- 480V, 25-800 hp (consult factory for larger sizes)
- 208/230V, 25-200 hp
- 575V, 25-800 hp (consult factory for larger sizes)
- Over 15 years of 18 -pulse clean power experience
- 65 kAIC Standard at 480 V and 208 V
- 100 kAIC optional

Standards and Certifications

UL 508C tested, listed and approved.

Product Identification

Type 1, 25-150 hp ($30 \times 90 \times 21.50$)

Catalog Number Selection

CPX9000 Enclosed Drive

Notes

(1) Brake chopper is standard in drives up to $30 \mathrm{hp} \mathrm{I}_{\mathrm{H}}$ or $40 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ at 480 V . It is optional in larger drives
(2) Local/remote keypad is included as the standard control panel.
${ }^{(3)}$ Some options are voltage and/or horsepower specific. Consult your Eaton representative for details.
(4) See Pages V6-T2-210 and V6-T2-211 for complete descriptions.
(5) Includes local/remote speed reference switch.
(6) See Pages V6-T2-208 and V6-T2-209 for complete descriptions.
(7) Consult Eaton for availability.

Product Selection

When Ordering

- Select a base catalog number that meets the application requirementsnominal horsepower, voltage and enclosure rating. (The enclosed drive's continuous output amp rating should be equal to or greater than the motor's full load amp rating.) The base-enclosed package includes a standard drive, doormounted alphanumeric panel and enclosure.
- The CPX9000 product uses the term High Overload $\left(I_{H}\right)$ in place of the term Constant Torque (CT). Likewise, Low Overload (IL) is used in place of the term Variable Torque (VT). The new terms are a more precise description of the rating. The older terms included ambient temperature ratings in addition to overload ratings. In order to minimize enclosure size and offer the highest ambient temperature
rating, overload and temperature ratings are now treated separately. Ambient temperature ratings are shown in the table below. Consult the factory for $50^{\circ} \mathrm{C}$ ratings of FR10 and above.

Ambient Temperature Ratings

Frame Size	$\mathbf{I}_{\mathbf{H}}$	$\mathbf{I}_{\mathbf{L}}$
FR4-FR9	$50^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
FR10 and above	$40^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$

- If dynamic brake chopper or control/communication option is desired, change the appropriate code in the base catalog number.
- All of the programming is exactly the same as the standard SVX9000 drive.
- Select enclosed options. Add the codes as suffixes to the base catalog number in alphabetical and numeric order.

208/230V Drives

CPX9000 Base Drive Type 1

Enclosure Size ${ }^{(1)}$	hp ${ }^{(2)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{(3)}$
Low Overload Drive				
7	25	75	FR7	CPX02512AA
	30	88	FR7	CPX03012AA
	40	114	FR7	CPX04012AA
	50	140	FR8	CPX05012AA
	60	170	FR8	CPX06012AA
	75	205	FR8	CPX07512AA
8	100	300	FR9	CPX10012AA
9	125	340	FR8T	CPX12512AA
	150	410	FR8T	CPX15012AA
10	200	522	FR9T	CPX20012AA
High Overload Drive				
7	25	75	FR7	CPX02512DA
	30	88	FR7	CPX03012DA
	40	114	FR8	CPX04012DA
	50	140	FR8	CPX05012DA
	60	170	FR8	CPX06012DA
8	75	205	FR9	CPX07512DA
9	100	300	FR8T	CPX10012DA
	125	340	FR8T	CPX12512DA
10	150	410	FR9T	CPX15012DA
	200	522	FR9T	CPX20012DA

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
(2) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

CPX9000 Base Drive NEMA 12 Filtered

Enclosure Size ${ }^{1}$	hp ${ }^{2}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{3}$
Low Overload Drive				
7	25	75	FR7	CPX02562AA
	30	88	FR7	CPX03062AA
	40	114	FR7	CPX04062AA
	50	140	FR8	CPX05062AA
	60	170	FR8	CPX06062AA
	75	205	FR8	CPX07562AA
8	100	300	FR9	CPX10062AA
9	125	340	FR8T	CPX12562AA
	150	410	FR8T	CPX15052AA
10	200	522	FR9T	CPX20062AA
High Overload Drive				
7	25	75	FR7	CPX02562DA
	30	88	FR7	CPX03062DA
	40	114	FR8	CPX04062DA
	50	140	FR8	CPX05062DA
	60	170	FR8	CPX06062DA
8	75	205	FR9	CPX07562DA
9	100	300	FR8T	CPX10062DA
	125	340	FR8T	CPX12562DA
10	150	410	FR9T	CPX15062DA
	200	522	FR9T	CPX20062DA

CPX9000 Base Drive Type 3R ${ }^{4}$

Enclosure Size ${ }^{1}$	hp ${ }^{(2)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{3}$
Low Overload Drive				
7	25	75	FR7	CPX02532AA
	30	88	FR7	CPX03032AA
	40	114	FR7	CPX04032AA
	50	140	FR8	CPX05032AA
	60	170	FR8	CPX06032AA
	75	205	FR8	CPX07532AA
8	100	300	FR9	CPX10032AA
9	125	340	FR8T	CPX12532AA
High Overload Drive				
7	25	75	FR7	CPX02532DA
	30	88	FR8	CPX03032DA
	40	114	CPX04032DA	
	50	140	FR8	CPX05032DA
8	75	170	FR9	CPX06032DA
9	100	305	CPX07532DA	

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
(2) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.
(4) All Type 3R drives use the Size F enclosure.

Adjustable Frequency Drives
CPX9000 Drives

480V Drives
2

CPX9000 Base Drive Type 1

Enclosure Size ${ }^{(1)}$	hp ${ }^{2}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{3}$
Low Overload Drive				
7	25	38	FR6	CPX02514BA
	30	46	FR6	CPX03014BA
	40	61	FR6	CPX04014BA
	50	72	FR7	CPX05014AA
	60	87	FR7	CPX06014AA
	75	105	FR7	CPX07514AA
	100	140	FR8	CPX10014AA
	125	170	FR8	CPX12514AA
	150	205	FR8	CPX15014AA
8	200	261	FR9	CPX20014AA
	250	300	FR9	CPX25014AA
9	300	385	FR10	CPX30014AA
	350	460	FR10	CPX35014AA
	400	520	FR10	CPX40014AA
10	500	590	FR11	CPX50014AA
	550	650	FR11	CPX55014AA
	600	730	FR11	CPX60014AA
11	650	820	FR11	CPX65014AA
	700	920	FR12	CPX70014AA
	800	1030	FR12	CPX80014AA
High Overload Drive				
7	25	38	FR6	CPX02514EA
	30	46	FR6	CPX03014EA
	40	61	FR7	CPX04014DA
	50	72	FR7	CPX05014DA
	60	87	FR7	CPX06014DA
	75	105	FR8	CPX07514DA
	100	140	FR8	CPX10014DA
	125	170	FR8	CPX12514DA
8	150	205	FR9	CPX15014DA
	200	245	FR9	CPX20014DA
9	250	300	FR10	CPX25014DA
	300	385	FR10	CPX30014DA
	350	460	FR10	CPX35014DA
10	400	520	FR11	CPX40014DA
	500	590	FR11	CPX50014DA
	550	650	FR11	CPX55014DA
11	600	720	FR12	CPX60014DA
	650	820	FR12	CPX65014DA
	700	840	FR12	CPX70014DA

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
(2) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

CPX9000 Drive

CPX9000 Base Drive NEMA 12 Filtered

Enclosure Size ${ }^{(1)}$	hp ${ }^{(2)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{(3)}$
Low Overload Drive				
7	25	38	FR6	CPX02564BA
	30	46	FR6	CPX03064BA
	40	61	FR6	CPX04064BA
	50	72	FR7	CPX05064AA
	60	87	FR7	CPX06064AA
	75	105	FR7	CPX07564AA
	100	140	FR8	CPX10064AA
	125	170	FR8	CPX12564AA
	150	205	FR8	CPX15064AA
8	200	261	FR9	CPX20064AA
	250	300	FR9	CPX25064AA
9	300	385	FR10	CPX30064AA
	350	460	FR10	CPX35064AA
	400	520	FR10	CPX40064AA
10	500	590	FR11	CPX50064AA
	550	650	FR11	CPX55064AA
	600	730	FR11	CPX60064AA
11	650	820	FR11	CPX65064AA
	700	920	FR12	CPX70064AA
	800	1030	FR12	CPX80064AA
High Overload Drive				
7	25	38	FR6	CPX02564EA
	30	46	FR6	CPX03064EA
	40	61	FR7	CPX04064DA
	50	72	FR7	CPX05064DA
	60	87	FR7	CPX06064DA
	75	105	FR8	CPX07564DA
	100	140	FR8	CPX10064DA
	125	170	FR8	CPX12564DA
8	150	205	FR9	CPX15064DA
	200	245	FR9	CPX20064DA
9	250	300	FR10	CPX25064DA
	300	385	FR10	CPX30064DA
	350	460	FR10	CPX35014DA
10	400	520	FR11	CPX40064DA
	500	590	FR11	CPX50064DA
	550	650	FR11	CPX55064DA
11	600	720	FR12	CPX60064DA
	650	820	FR12	CPX65064DA
	700	840	FR12	CPX70064DA

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
${ }^{(2)}$ hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

Adjustable Frequency Drives

CPX9000 Drive

CPX9000 Base Drive Type 3R (1)

Enclosure Size ${ }^{2}$	hp ${ }^{(3)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{4}$
Low Overload Drive				
7	25	38	FR6	CPX02534AA
	30	46	FR6	CPX03034AA
	40	61	FR6	CPX04034AA
	50	72	FR7	CPX05034AA
	60	87	FR7	CPX06034AA
	75	105	FR7	CPX07534AA
	100	140	FR8	CPX10034AA
	125	170	FR8	CPX12534AA
	150	205	FR8	CPX15034AA
8	200	261	FR9	CPX20034AA
	250	300	FR9	CPX25034AA
High Overload Drive				
7	25	38	FR6	CPX02534DA
	30	46	FR6	CPX03034DA
	40	61	FR7	CPX04034DA
	50	72	FR7	CPX05034DA
	60	87	FR7	CPX06034DA
	75	105	FR8	CPX07534DA
	100	140	FR8	CPX10034DA
	125	170	FR8	CPX12534DA
8	150	205	FR9	CPX15034DA
	200	245	FR9	CPX20034DA

Notes

(1) All Type 3R drives use the Size F enclosure.
(2) See enclosure dimensions beginning on Page V6-T2-217.
(3) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(4) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

575V Drives

CPX9000 Drive	CPX9000 Base Drive Type 1				
	Enclosure Size ${ }^{1}$	hp ${ }^{2}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{3}$
	Low Overload Drive				
	7	25	27	FR6	CPX02515AA
		30	34	FR6	CPX03015AA
		40	41	FR7	CPX04015AA
		50	52	FR7	CPX05015AA
		60	62	FR8	CPX06015AA
		75	80	FR8	CPX07515AA
		100	100	FR8	CPX10015AA
	8	125	125	FR9	CPX12515AA
		150	144	FR9	CPX15015AA
		200	208	FR9	CPX20015AA
	9	250	261	FR10	CPX25015AA
		300	325	FR10	CPX30015AA
		400	385	FR10	CPX40015AA
	10	500	502	FR11	CPX50015AA
		600	590	FR11	CPX60015AA
	11	650	650	FR12	CPX65015AA
		700	750	FR12	CPX70015AA
		800	820	FR12	CPX80015AA
	High Overload Drive				
	7	25	27	FR6	CPX02515DA
		30	34	FR7	CPX03015DA
		40	41	FR7	CPX04015DA
		50	52	FR8	CPX05015DA
		60	62	FR8	CPX06015DA
		75	80	FR8	CPX07515DA
	8	100	100	FR9	CPX10015DA
		125	125	FR9	CPX12515DA
		150	144	FR9	CPX15015DA
	9	200	208	FR10	CPX20015DA
		250	261	FR10	CPX25015DA
		300	325	FR10	CPX30015DA
	10	400	385	FR11	CPX40015DA
		450	460	FR11	CPX45015DA
		500	502	FR11	CPX50015DA
	11	600	590	FR12	CPX60015DA
		650	650	FR12	CPX65015DA
		700	750	FR12	CPX70015DA

Notes

(1) See enclosure dimensions beginning on Page V6-T2-217.
${ }^{(2)}$ hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

Adjustable Frequency Drives
CPX9000 Drives

2

CPX9000 Drive					
	Enclosure Size ${ }^{(1)}$	hp ${ }^{2}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{(3)}$
	Low Over	Drive			
-	7	25	27	FR6	CPX02565AA
		30	34	FR6	CPX03065AA
		40	41	FR7	CPX04065AA
		50	52	FR7	CPX05065AA
		60	62	FR8	CPX06065AA
		75	80	FR8	CPX07565AA
		100	100	FR8	CPX10065AA
	8	125	125	FR9	CPX12565AA
		150	144	FR9	CPX15065AA
		200	208	FR9	CPX20065AA
	9	250	261	FR10	CPX25065AA
		300	325	FR10	CPX30065AA
		400	385	FR10	CPX40065AA
	10	500	502	FR11	CPX50065AA
		600	590	FR11	CPX60065AA
	11	650	650	FR12	CPX65065AA
		700	750	FR12	CPX70065AA
		800	820	FR12	CPX80065AA
	High Ove	D Driv			
	7	25	27	FR6	CPX02565DA
		30	34	FR7	CPX03065DA
		40	41	FR7	CPX04065DA
		50	52	FR8	CPX05065DA
		60	62	FR8	CPX06065DA
		75	80	FR8	CPX07565DA
	8	100	100	FR9	CPX10065DA
		125	125	FR9	CPX12565DA
		150	144	FR9	CPX15065DA
	9	200	208	FR10	CPX20065DA
		250	261	FR10	CPX25065DA
		300	325	FR10	CPX30065DA
	10	400	385	FR11	CPX40065DA
		450	460	FR11	CPX45065DA
		500	502	FR11	CPX50065DA
	11	600	590	FR12	CPX60065DA
		650	650	FR12	CPX65065DA
		700	750	FR12	CPX70065DA

Notes

[^0]${ }^{(2)}$ hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(3) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

CPX9000 Base Drive Type 3R ©

Enclosure Size ${ }^{(2)}$	hp ${ }^{(3)}$	Current (A)	Chassis Frame	Base Catalog Number ${ }^{4}$
Low Overload Drive				
7	25	27	FR6	CPX02535AA
	30	34	FR6	CPX03035AA
	40	41	FR7	CPX04035AA
	50	52	FR7	CPX05035AA
	60	62	FR8	CPX06035AA
	75	80	FR8	CPX07535AA
	100	100	FR8	CPX10035AA
8	125	125	FR9	CPX12535AA
	150	144	FR9	CPX15035AA
	200	208	FR9	CPX20035AA
High Overload Drive				
7	25	27	FR6	CPX02535DA
	30	34	FR7	CPX03035DA
	40	41	FR7	CPX04035DA
	50	52	FR8	CPX05035DA
	60	62	FR8	CPX06035DA
	75	80	FR8	CPX07535DA
8	100	100	FR9	CPX10035DA
	125	125	FR9	CPX12535DA
	150	144	FR9	CPX15035DA

Notes

(1) All Type 3R drives use the Size F enclosure.
(2) See enclosure dimensions beginning on Page V6-T2-217.
(3) hp ratings are provided as a guideline. Drives should be sized per motor nameplate FLA.
(4) The 18-pulse clean power assembly includes a standard drive, door-mounted local/remote keypad and enclosure.

Options

CPX9000 Series Option Board Kits

The CPX9000 Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards (see figure below).

The CPX9000 Series factory- installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

9000X Series Option Board Kits

Option Board Kits

		Field Installed	Factory Installed	SVX Re	dy Progra					
Option Kit Description ${ }^{(1)}$	Allowed Slot Locations ${ }^{(2)}$	Catalog Number	Option Designator	Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC/NO)	B	OPTA2	-	-	-	-	-	-	-	■
6 DI, 1 DO, 2 AI, 1AO, $1+10$ Vdc ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{ext}+24 \mathrm{Vdc}$	A	OPTA9	-	■	-	-	-	-	■	-

Extended I/O Cards

6 DI	B, C, D, E	OPTB1	B1	-	-	-	-	-	-	-
1 RO (NC/NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	-	-
1 Al (mA isolated), 2 AO (mA isolated)	B, C, D, E	OPTB4	B4	\square	-	\square	-	\square	-	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	-	-
3 Pt100 RTD board	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	-	-

Communication Cards ${ }^{\text {(}}$										
Modbus	D, E	OPTC2	C2	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	Cl	-	-	-	-	-	-	-
BACnet	D, E	OPTCJ	CJ	-	-	-	-	-	-	-
Ethernet IP	D, E	OPTCK	CK	-	-	-	-	-	-	-
Johnson Controls N2	D, E	OPTC2	CA	\square	-	-	-	-	-	-
PROFIBUS DP	D, E	OPTC3	C3	-	-	-	-	-	-	-
LonWorks	D, E	OPTC4	C4	-	-	-	-	-	-	-
PROFIBUS DP (D9 connector)	D, E	OPTC5	C5	-	-	-	-	-	-	-
CANopen (slave)	D, E	OPTC6	C6	-	-	-	-	-	-	-
DeviceNet	D, E	OPTC7	C7	-	-	-	-	-	-	-
Modbus (D9 type connector)	D, E	OPTC8	C8	-	-	-	-	-	-	-
RS-232 with D9 connection	D, E	OPTD3	D3	-	\bullet	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Modbus RTU Network Communications

The Modbus Network Card OPTC2 is used for connecting the 9000X Drive as a slave on a Modbus network. The interface is connected by a 9-pin DSUB connector (female) and the baud rate ranges from 300 to 19,200 baud. Other communication parameters include an address range from 1 to 247; a parity of None, Odd or Even; and the stop bit is 1 .

PROFIBUS Network Communications

The PROFIBUS Network Card OPTC3 is used for connecting the 9000X Drive as a slave on a PROFIBUS-DP network. The interface is connected by a 9-pin DSUB connector (female). The baud rates range from 9.6K baud to 12 M baud, and the addresses range from 1 to 127.

LonWorks Network Communications

The LonWorks Network Card OPTC4 is used for connecting the 9000X Drive on a LonWorks network. This interface uses Standard Network Variable Types (SNVT) as data types. The channel connection is achieved using a FTT-10A Free Topology transceiver via a single twisted transfer cable. The communication speed with LonWorks is 78 kBits/s.

CANopen (Slave) Communications

The CANopen (Slave)
Network Card OPTC6 is used for connecting the 9000X Drive to a host system. According to ISO ${ }^{\circledR} 11898$ standard cables to be chosen for CAN bus should have a nominal impedance of 120 ohms, and specific line delay of nominal $5 \mathrm{nS} / \mathrm{m}$. 120 ohm line termination resistors required for installation.

DeviceNet Network Communications

The DeviceNet Network Card OPTC7 is used for connecting the 9000X Drive on a DeviceNet Network. It includes a 5.08 mm pluggable connector. Transfer method is via CAN using a two-wire twisted shielded cable with two-wire bus power cable and drain. The baud rates used for communication include 125 K baud, 250K baud and 500 K baud.

Johnson Controls Metasys N2

 Network CommunicationsThe OPTC2 fieldbus board provides communication between the 9000X Drive and a Johnson Controls Metasys ${ }^{\text {TM }} \mathrm{N} 2$ network. With this connection, the drive can be controlled, monitored and programmed from the Metasys system. The N2 fieldbus is available as a factory-installed option and as a field-installable kit.

Modbus/TCP Network Communications

The Modbus/TCP Network Card OPTCI is used for connecting the 9000X Drive to Ethernet networks using Modbus protocol. It includes an RJ-45 pluggable connector. This interface provides a selection of standard and custom register values to communicate drive parameters. The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable over Ethernet using a supplied software tool.

BACnet Network

 CommunicationsThe BACnet Network Card OPTCJ is used for connecting the 9000X Drive to BACnet networks. It includes a 5.08 mm pluggable connector. Data transfer is Master-Slave/ Token Passing (MS/TP) RS-485. This interface uses a collection of 30 Binary Value Objects (BVOs) and 35 Analog Value Objects (AVOs) to communicate drive parameters. The card supports 9.6, 19.2 and 38.4 Kbaud communication speeds and supports network addresses 1 to 127 .

Ethernet/IP Network Communications

The Ethernet/IP Network Card OPTCK is used for connecting the 9000X Drive to Ethernet/Industrial Protocol networks. It includes an RJ45 pluggable connector. The interface uses CIP objects to communicate drive parameters (CIP is
"Common Industrial Protocol," the same protocol used by DeviceNet). The board supports 10 Mbps and 100 Mbps communication speeds. The IP address of the board is configurable by Static, BOOTP and DHCP methods.

Adjustable Frequency Drives

CPX9000 Drives

Control/Communication Option Descriptions

For availability, see Product Selection for base drive voltage required.

Available Control/Communications Options

Option	Description	Option Type
K1	Door-Mounted Speed Potentiometer-Provides the CPX9000 with the ability to adjust the frequency reference using a door-mounted potentiometer. This option uses the 10 Vdc reference to generate a $0-10 \mathrm{~V}$ signal at the analog voltage input signal terminal. When the HOA bypass option is added, the speed is controlled when the HOA switch is in the HAND position. Without the HOA bypass option, a two-position switch (labeled local/remote) is provided on the keypad to select speed reference from the speed potentiometer or a remote speed signal.	Control
K2	Door-Mounted Speed Potentiometer with HOA Selector Switch—Provides the CPX9000 with the ability to start/stop and adjust the speed reference from door-mounted control devices or remotely from customer-supplied inputs. In HAND position, the drive will start and the speed is controlled by the door-mounted speed potentiometer. The drive will be disabled in the OFF position. When AUTO is selected, the drive run and speed control commands are via user-supplied dry contact and 4-20 mA signal.	Control
K3	3-15 psig Follower—Provides a pneumatic transducer that converts a 3-15 psig pneumatic signal to either 0-8 Vdc or a 1-9 Vdc signal interface with the CPX9000. The circuit board is mounted on the inside of the front enclosure panel and connects to the user's pneumatic control system via $6 \mathrm{ft}(1.8 \mathrm{~m})$ of flexible tubing and a $1 / 4$ inch $(6.4 \mathrm{~mm})$ brass tube union.	Control
K4	HAND/OFF/AUTO Switch for Non-Bypass Configurations-Provides a three-position selector switch that allows the user to select either a HAND or AUTO mode of operation. HAND mode is defaulted to keypad operation, and AUTO mode is defaulted to control from an external terminal source. These modes of operation can be configured via drive programming to allow for alternate combinations of start and speed sources. Start and speed sources include Keypad, $1 / 0$ and fieldbus.	Control
K5	MANUAL/AUTO Speed Reference Switch-Provides door-mounted selector switch for MANUAL/AUTO speed reference.	Control
K6	START/STOP Pushbuttons-Provide door-mounted START and STOP pushbuttons for either bypass or non-bypass configurations.	Control
KF	Bypass Test Switch for RB and RA—Allows the user to energize the AF drive for testing while operating the motor on the bypass controller. The Test Switch is mounted on the inside of the enclosure door.	Addl. bypass
KO	Standard Elapsed Time Meter-Provides a door-mounted elapsed run-time meter.	Control
L1	Power On and Fault Power Lights-Provide a white Power On light that indicates power to the enclosed cabinet and a red fault light that indicates a drive fault has occurred.	Light
12	Bypass Pilot Lights for RB, RA Bypass Options-A green light indicates when the motor is running in Inverter mode and an amber light indicates when the motor is running in Bypass mode. The lights are mounted on the enclosure door, above the switches.	Addl. bypass
LE	Red Run Pilot Light $\mathbf{0 . 8 7 - I n c h ~ (~} \mathbf{2 2} \mathbf{~ m m}$)-Provides a red Run pilot light that indicates the drive is running.	Light
P1	Input Circuit Breaker-High interrupting circuit breaker that provides a means of short-circuit protection for the power cables between it and the CPX9000, and protection from high-level ground faults on the power cable. Allows a convenient means of disconnecting the CPX9000 from the line and the operating mechanism can be padlocked in the OFF position. This is factory mounted in the enclosure. Standard rating is 65 kAIC at $208 / 480 \mathrm{~V} .100 \mathrm{kAIC}$ is available as an option.	Input
PE	Output Contactor-Provides a means for positive disconnection of the drive output from the motor terminals. The contactor coil is controlled by the drive's run or permissive logic. NC and NO auxiliary contacts rated at $10 \mathrm{~A}, 600 \mathrm{Vac}$ are provided for customer use. Bypass options $\mathbf{R B}$ and $\mathbf{R A}$ include an output contactor as standard. This option includes a low VA 115 Vac fused control power transformer and is factory mounted in the enclosure.	Output
PF	Output Filter-Used to reduce the transient voltage (DV/DT) at the motor terminals. The output filter is recommended for cable lengths exceeding $100 \mathrm{ft}(30.5 \mathrm{~m})$ with a drive of 3 hp and above, for cable lengths of $33 \mathrm{ft}(10.1 \mathrm{~m})$ with a drive of 2 hp and below, or for a drive rated at $525-690 \mathrm{~V}$. This option is mounted in the enclosure.	Output
PG	MotoRx ($\mathbf{3 0 0} \mathbf{- 6 0 0} \mathbf{F t}$) $\mathbf{1 0 0 0} \mathbf{~ V / \mu S ~ D V / D T ~ F i l t e r — U s e d ~ t o ~ r e d u c e ~ t r a n s i e n t ~ v o l t a g e ~ (D V / D T) ~ a n d ~ p e a k ~ v o l t a g e s ~ a t ~ t h e ~ m o t o r ~ t e r m i n a l s . ~ T h i s ~ o p t i o n ~ i s ~ c o m p r i s e d ~ o f ~ a ~} 0.5 \%$ line reactor, followed by capacitive filtering and an energy recovery/clamping circuit. Unlike the output filter (see option PF), the MotoRx recovers most of the energy from the voltage peaks, resulting in a lower voltage drop to the motor, and therefore conserving power. This option is used when the distance between a single motor and the drive is $300-600 \mathrm{ft}$ ($91.4-182.9 \mathrm{~m}$).	Output
PH	Single Overload Relay-Uses a bimetallic overload relay to provide additional overload current protection to the motor on configurations without bypass options. It is included with the bypass configurations for overload current protection in the bypass mode. The overload relay is mounted within the enclosure, and is manually resettable. Heater pack included.	Output
PI	Dual Overload Relays-This option is recommended when a single drive is operating two motors and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable. Heater packs not included.	Output
PN	Dual Overloads for Bypass-This option is recommended when a single drive is operating two motors in the Bypass mode and overload current protection is needed for each of the motors. The standard configuration includes two bimetallic overload relays, each sized to protect a motor with 50% of the drive hp rating. For example, a 100 hp drive would include two overload relays sized to protect two 50 hp motors. The relays are mounted within the enclosure, and are manually resettable.	Addl. bypass

For availability, see Product Selection for base drive voltage required.
Available Control/Communications Options, continued

Option	Description	Option Type
RA	Manual HOA Bypass Controller-The manual HAND/OFF/AUTO (HOA)—three-contactor—bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in the inverter mode. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-216).	Bypass
RB	Manual IOB Bypass Controller-The manual INVERTER/OFF/BYPASS (IOB)—three-contactor—bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted IOB selector switch. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-216).	Bypass
RC	Auto Transfer HOA Bypass Controller -The manual HAND/OFF/AUTO (HOA)—three-contactor—bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted HOA selector switch and an INVERTER/BYPASS switch. The HOA switch provides the ability to start and stop the drive in either mode. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-216). Door-mounted pilot lights are provided that indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RD	Auto Transfer IOB Bypass Controller-The auto INVERTER/OFF/BYPASS (IOB)-three-contactor-bypass option provides a means of bypassing the CPX9000, allowing the AC motor to be operated at full speed directly from the AC supply line. The circuitry provides an automatic transfer of the load to "across the line" operation after a drive trip. This option consists of an input HMCP, a fused control power transformer, and a full voltage bypass starter with a door-mounted IOB selector switch. IEC type input, bypass and input contactors are provided. The contactors are mechanically and electrically interlocked (see wiring diagram on Page V6-T2-216). Doormounted pilot lights are provided that indicate bypass or inverter operation. A green light indicates when the motor is running in inverter mode and an amber light indicates when the motor is running in bypass mode. WARNING: The motor may restart when the overcurrent relay is reset when operating in bypass, unless the IOB selector switch is turned to the OFF position.	Bypass
RG	Reduced Voltage Starter for Bypass-Used in conjunction with bypass option RA, RB, RC or RD. This option adds reduced voltage soft starter to bypass assembly for soft starting in bypass mode.	Bypass
S7	10.00-Inch ($\mathbf{2 5 4 . 0} \mathbf{~ m m}$) Expansion-Expansion cabinet allows for special components, customer-supplied components or oversized cables. NOTE: Enclosure expansion rated Type 1 only.	Enclosure
S8	$\mathbf{2 0 . 0 0}$-Inch ($\mathbf{5 0 8 . 0} \mathbf{~ m m}$) Expansion-Expansion cabinet allows for special components, customer-supplied components or oversized cables. NOTE: Enclosure expansion rated Type 1 only.	Enclosure
S9	Space Heater-Prevents condensation from forming in the enclosure when the drive is inactive or in storage. Includes a thermostat for variable temperature control. The heater requires a customer-supplied 115 V remote supply source.	Enclosure

Dissipated Watt Losses																
Horsepower	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 0 0}$	$\mathbf{3 5 0}$	$\mathbf{4 0 0}$	$\mathbf{4 5 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$
Watts	1844	2170	2540	3040	4011	4940	5730	8020	9383	11600	13600	15700	16250	17976	20393	27200

Conformal (Varnished) Coating (1)

Chassis Frame	Delivery Code	Chassis Frame	Delivery Code
FR6	FP	FR9	FP
FR7	FP	FR10	FP
FR8	FP	FR11	FP
-	-	FR12	FP

Notes

(1) See catalog number description to order.
(2) Contact factory for 208 V and 575 V applications.
(3) Contact factory.

480V Input Disconnect Selection (2)

Horsepower	P1 Input Breaker	Bypass Motor Circuit Protector (RA, RB, RC, RD)
25	HFD3050	HMCP050K2C
30	HFD3060	HMCP100R3C
40	HFD3080	HMCP100R3C
50	HFD3100	HMCP100R3C
60	HFD3100	HMCP150T4C
75	HFD3125	HMCP150T4C
100	HFD3150	HMCP150U4C
125	HFD3200	HMCP250W5C
150	HKD3300	HMCP250W5C
200	HKD3400	HMCP400X5C
250	HLD3600	HMCP400X5C
$300-400$	HND312	HMCP800X7W
$500-600$	3	
$650-800$		

Adjustable Frequency Drives

CPX9000 Drives

Enclosed Drive Options

Light Options	Catalog Number Suffix
Description	L1
Power on, run, fault LED lights $(22 \mathrm{~mm})$	L3
Power on, fault LED lights $(22 \mathrm{~mm})$	LA
Green LED run light $(22 \mathrm{~mm})$	LD
Green LED stop light $(22 \mathrm{~mm})$	LE
Red LED run light $(22 \mathrm{~mm})$	LF
Red LED stop light $(22 \mathrm{~mm})$	LG
Red LED fault light $(22 \mathrm{~mm})$	LJ
Power on white LED light $(22 \mathrm{~mm})$	LU
Miscellaneous LED light $(22 \mathrm{~mm})$	
Control Options	Catalog
Description	Kumber Suffix
Door-mounted speed potentiometer	K2
Door-mounted speed potentiometer with HOA selector switch	
$3-15$ psig follower	K3
HOA selector switch	K4
MANUAL/AUTO reference switch	K5
START-STOP pushbuttons	K6
Type D2 control relay	SD
On-delay relay	SE
Off-delay relay	SF
Additional terminal blocks per 4 points	SD

Bypass Control Options

Description	Catalog Number Suffix
Bypass test switch used with RA and RB	KF
Inverter/bypass pilot lights	L2

Meter Options

Description	Catalog Number Suffix
Standard elapsed time meter	K0
Frequency meter	KS
MP-3000 relay with URTD	KV
MP-3000 relay with URTD and CTs	KU

Enclosure Options

Enclosure Size	Catalog Number Suffix
10.00 Inch (254.0 mm) Expansion	
7	S7
8	S7
9	S7
10	S7
11	S7
20.00 Inch (508.0 mm) Expansion	
7	S8
8	S8
9	S8
10	S8
11	S8
Space Heater ${ }^{(1)}$	
7	S9
8	S9
9	S9
10	S9
11	S9
Plastic Nameplate	
7	SN
8	SN
9	SN
10	SN
11	SN

Note
(1) Requires customer-supplied 115 Vac supply.

208V and 230V Power Options, 25-200 hp

Description	Catalog Number Suffix
Input breaker	P1
Output contactor	PE
Single overload relay	PH
Dual overload relays	PI
MOV	P7
50 kA surge protective device	P8
100 kA surge protective device	P9

480 and 575V Power Options, 25-800 hp	
Description	Catalog Number Suffix
Input breaker	P1
Output contactor	PE
Output filter	PF
MotoRx (300-600 Ft) DV/DT filter	PG
Single overload relay	PH
Dual overload relays	PI
Input M0V	P7
50 kA surge protective device	P8
100 kA surge protective device	P8

208 V and 230 V Bypass Options, 25-200 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

480 and 575V Bypass Options, 25-800 hp

Description	Catalog Number Suffix
Manual HOA bypass controller	RA
IOB bypass controller	RB
Auto transfer HOA bypass controller	RC
Auto transfer IOB bypass controller	RD
Reduced voltage starter for bypass	RG
Dual overloads for bypass	PN

2.7
 Adjustable Frequency Drives

CPX9000 Drives

Technical Data and Specifications

2 CPX9000 Drives

Description	Specification
Primary Design Features	
45-66 Hz input frequency	Standard
Output: AC volts maximum	Input voltage base
Output frequency range	$0-320 \mathrm{~Hz}$
Initial output current (I H$)$	250% for 2 seconds
Overload (1 minute [l/ $/ \mathrm{L}$])	$150 \% / 110 \%$
Enclosure space heater	Optional
Oversize enclosure	Standard
Output contactor	Optional
Bypass motor starter	Optional
Listings	UL, cUL, 508C
Protection Features	
Incoming line fuses	Standard 200 kAIC rating
AC input circuit disconnect	Optional
Phase rotation insensitive	Standard
EMI filter	Standard FR6 thru FR9 (1)
Input phase loss protection	Standard
Input overvoltage protection	Standard
Line surge protection	Standard
Output short-circuit protection	Standard
Output ground fault protection	Standard
Output phase protection	Standard
Overtemperature protection	Standard
DC overvoltage protection	Standard
Drive overload protection	Standard
Motor overload protection	Standard
Programmer software	Optional
Local/remote keypad	Standard
Keypad lockout	Standard
Fault alarm output	Standard
Built-in diagnostics	Surge protective device

Description	Specification
Input/Output Interface Features	
Setup adjustment provisions	
Remote keypad/display	Standard
Personal computer	Standard
Operator control provisions	
Drive mounted keypad/display	Standard
Remote keypad/display	Standard
Conventional control elements	Standard
Serial communications	Optional
115 Vac control circuit	Optional
Speed setting inputs	
Keypad	Standard
$0-10 \mathrm{Vdc}$ potentiometer/voltage signal	Standard
4-20 mA isolated	Configurable
4-20 mA differential	Configurable
3-15 psig	Optional
Analog outputs	
Speed/frequency	Standard
Torque/load/current	Programmable
Motor voltage	Programmable
Kilowatts	Programmable
$0-10 \mathrm{Vdc}$ signals	Configurable w/jumpers
4-20 mA DC signals	Standard
Isolated signals	Standard
Discrete outputs	
Fault alarm	Standard
Drive running	Standard
Drive at set speed	Programmable
Optional parameters	14
Dry contacts	2 Form C contacts available
Additional discrete outputs	Optional
Communications	
RS-232	Standard
RS-422/485	Optional
DeviceNet ${ }^{\text {™ }}$	Optional
Modbus RTU	Optional
CanOpen (slave)	Optional
Profibus-DP	Optional
LonWorks	Optional
Johnson Controls Metasys N2	Optional
Ethernet IP/Modbus TCP	Optional
BACnet	Optional
Note	
(1) The EMI filter is optional in FR10 and la	

CPX9000 Drives

Description	Specification
Performance Features	
Sensorless vector control	Standard
Volts/hertz control	Standard
IR and slip compensation	Standard
Electronic reversing	Standard
Dynamic braking	Optional
DC braking	Standard
PID set point controller	Programmable
Critical speed lockout	Standard
Current (torque) limit	Standard
Adjustable acceleration/deceleration	Standard
Linear or S curve accel/decel	Standard
Jog at preset speed	Standard
Thread/preset speeds	7
Automatic restart	Selectable
Coasting motor start	Standard
Coast or ramp stop selection	Standard
Elapsed time meter	Optional
Carrier frequency adjustment	$1-16$ kHz
Standard Conditions for Application and Service	
Maximum operating ambient temperature $0-50^{\circ} \mathrm{C}$ up to FR9	
$00^{\circ} \mathrm{CR} 10$ and larger, consult factory for $50^{\circ} \mathrm{C}$	
rating above FR9	
Storage temperature	-40 to $60^{\circ} \mathrm{C}$
Humidity (maximum), noncondensing	95%
Altitude (maximum without derate)	3300 ft (1000m)
Line voltage variation	$+10 /-15 \%$
Line frequency variation	$45-66 \mathrm{~Hz}$
Efficiency	$>95 \%$
Power factor (displacement)	$0.99+$
Power factor (apparent)	0.99

Standard I/O Specifications

Description	Specification
Six-digital input programmable	$24 \mathrm{~V}: " 0 " \leq 10 \mathrm{~V}, " 1 " \geq 18 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>5$ kohms
Two-analog input configurable	Voltage: $0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}>200$ kohms C/jumpers
Current: $0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohms	

I/O Specifications for Control/Communication Options

Description	Specification
Analog voltage, input	$0- \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}} \geq 200$ kilohms
Analog current, input	0 (4)-20 mA, $\mathrm{B}_{\mathrm{i}}=250$ ohms
Digital input	24V: "0" $\leq 10 \mathrm{~V}, ~ " 1 " \geq 18 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}}>5$ kilohms
Auxiliary voltage	$24 \mathrm{~V}(\pm 20 \%)$, max. 50 mA
Reference voltage	$10 \mathrm{~V} \pm 3 \%$, max. 10 mA
Analog current, output	0 (4)-20 mA, $R_{L}=500$ kilohms, resolution 10 bit, accuracy $\leq+2 \%$
Analog voltage, output	0 (2)-10V, $R_{L} \geq 1$ kilohm, resolution 10 bit, accuracy $\leq+2 \%$
Relay output max. switching voltage	$300 \mathrm{Vdc}, 250 \mathrm{Vac}$
Relay output max. switching load	$3 \mathrm{~A} / 24 \mathrm{Vdc}, 300 \mathrm{Vdc}, 250 \mathrm{Vac}$ (1)
Relay output max. continuous load	2A rms
Thermistor input	$\mathrm{R}_{\text {trip }}=4.7 \mathrm{kohms}$

Note
(1) For applications above 3A consult instruction manual.

Adjustable Frequency Drives
CPX9000 Drives

Wiring Diagrams

2

Power Diagram Up to FR9

Power Diagram FR10 and Larger

Power Diagram Up to FR9 with Bypass

Power Diagram FR10 and Larger with Bypass

Dimensions

Approximate Dimensions in Inches (mm)
Enclosure Size 7
25-150 hp I_{L} and 25-125 hp $\mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-25-100 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $25-75 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$

2.7
 Adjustable Frequency Drives
 CPX9000 Drives

Approximate Dimensions in Inches (mm)

Enclosure Size 8

$\mathbf{2 0 0}-\mathbf{2 5 0 ~ h p ~} \mathrm{I}_{\mathrm{L}}$ and $150-200 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-125-200 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $100-150 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$

Approximate Dimensions in Inches (mm)

Enclosure Size 9

$300-400 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $250-350 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-250-400 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $200-300 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$

Adjustable Frequency Drives
CPX9000 Drives

Approximate Dimensions in Inches (mm)

Enclosure Size 10

$500-600 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $400-500 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-500-600 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $400-500 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$

Approximate Dimensions in Inches (mm)

Enclosure Size F Type 3R Drives

$\mathbf{2 5 - 2 5 0} \mathbf{h p} \mathrm{I}_{\mathrm{L}}$ and $\mathbf{2 5 - 2 0 0 ~ h p ~} \mathrm{I}_{\mathrm{H}} 480 \mathrm{~V}-25-200 \mathrm{hp} \mathrm{I}_{\mathrm{L}}$ and $25-150 \mathrm{hp} \mathrm{I}_{\mathrm{H}} 575 \mathrm{~V}$ Type 3R Drives

CPX9000 Enclosure Dimensions

Enclosure Size ${ }^{1}$	Width	Height	Depth	Approx. Shipping Weight in Lbs (kg)
7	$30.00(762.0)$	$90.00(2286.0)$	$21.50(546.1)$	$1000(454)$
8	$48.00(1219.2)$	$90.00(2286.0)$	$26.14(664.0)$	$1400(636)$
9	$60.00(1524.0)$	$90.00(2286.0)$	$25.74(653.8)$	$1800(817)$
10	$80.00(2032.0)$	$90.00(2286.0)$	$31.75(806.5)$	$2100(953)$
$11(2) 3$	$120.00(3048.0)$	$90.00(2286.0)$	$25.74(653.8)$	$2500(1,135)$
F $^{(4)}$	$60.00(1524.0)$	$93.50(2374.9)$	$37.50(952.5)$	$2500(1,135)$

Notes

(1) Enclosure sizes accommodate drive and options, including bypass and disconnect.

For other power options, consult your Eaton representative.
(2) Consult factory. Limited power options available.
(3) Enclosure size 11 consists of two of the enclosure size 9 .
(4) All Type 3R drives use the Size F enclosure.

Adjustable Frequency Drives
LCX9000 Drives

LCX9000 Liquid Cooled Adjustable Frequency Drives

Product Description

The LCX9000 Liquid Cooled Drive family continues Eaton's tradition of providing state-of-the-industry products, by taking advantage of liquid cooling technology in lieu of air-cooling techniques.

The LCX9000 drives are liquid-cooled products that utilize potable water or a water-glycol mixture as a cooling medium.

Features and Benefits

- Compact size and low heat transfer rates allow enclosure size to be greatly reduced, which is especially beneficial in UL Type 4X applications
- Design is modular, with control and power modules independent of each other. Connection between power and control modules can be direct or extended via a fiber optic cable
- Same reliable control module and operating system as the SPX9000 air-cooled drives

Contents

Description

Page

LCX9000 Drives
Catalog Number Selection V6-T2-223
Product Selection . V6-T2-224
Options . V6-T2-227
Technical Data and Specifications V6-T2-229
Wiring Diagrams . V6-T2-230
Dimensions . V6-T2-232

- CE mark ensures compliance with the Electromagnetic Compatibility Directive (EMC) and the Low Voltage Directive (LVD)
- Reliable drive with over 500,000 hours MTBF based on MIL 217
- Currently supports DeviceNet, PROFIBUS-DP, Modbus RTU and Modbus TCP communication protocols
- Separately mounted line reactor included with AC fed models

Standards and Certifications

- CE

Catalog Number Selection

LCX9000 Liquid Cooled Adjustable Frequency Drives

Note
(1) Brake chopper is only available in 480 V CH3 drives.

Adjustable Frequency Drives
LCX9000 Drives

Product Selection

525-690 Vac Liquid Cooled Drives

Motor Output					
Current					
Thermal, $\mathbf{I}_{\text {th }}(\mathbf{A})$	$I_{L}(A)$	$I_{H}(A)$	kW	Chassis	Catalog Number
170	155	113	110	CH61	LCX170A0-5A3N2
208	189	139	132	CH61	LCX208A0-5A3N2
261	237	174	160	CH72	LCX261A0-5A3N2
325	295	217	200	CH72	LCX325A0-5A3N2
385	350	257	250	CH72	LCX385AO-5A3N2
416	378	277	250	CH72	LCX416A0-5A3N2
460	418	307	300	CH72	LCX460A0-5A3N2
502	456	335	355	CH72	LCX502A0-5A3N2
590	536	393	400	CH63	LCX590A0-5A3N2
650	591	433	450	CH63	LCX650A0-5A3N2
750	682	500	500	CH63	LCX750A0-5A3N2
820	745	547	560	CH74	LCX820A0-5A3N2
920	836	613	650	CH74	LCX920A0-5A3N2
1030	936	687	700	CH74	LCXH10A0-5A3N2
1180	1073	787	800	CH74	LCXH11A0-5A3N2
1300	1182	867	900	CH74	LCXH13A0-5A3N2
1500	1364	1000	1000	CH74	LCXH15A0-5A3N2

540-675 Vdc Liquid Cooled Inverter Units
Drive Output

Current Thermal $\mathrm{I}_{\mathrm{th}}(\mathrm{~A})$	Rated Cont.$I_{L}(A)$	Rated Cont.$I_{H}(A)$	Motor Output Power		Power Loss c/a/T (kW)	Chassis	Catalog Number
			Optimum Motor at $\mathrm{I}_{\mathrm{th}} 400 \mathrm{~V}(\mathrm{~kW})$	Optimum Motor at $\mathrm{I}_{\mathrm{th}} 500 \mathrm{~V}(\mathrm{~kW})$			
16	15	11	7.5	11	0.4/0.2/0.6	CH3	LCX016A0-4A7B2
22	20	15	11	15	0.5/0.2/0.7	CH3	LCX022A0-4A7B2
31	28	21	15	18.5	0.7/0.2/0.9	CH3	LCX031A0-4A7B2
38	35	25	18.5	22	0.8/0.2/1.0	CH3	LCX038A0-4A7B2
45	41	30	22	30	1.0/0.3/1.3	CH3	LCX045A0-4A7B2
61	55	41	30	37	1.3/0.3/1.5	CH3	LCX061A0-4A7B2
72	65	48	37	45	1.2/0.3/1.5	CH4	LCX072A0-4A7N2
87	79	58	45	55	1.5/0.3/1.8	CH4	LCX087A0-4A7N2
105	95	70	55	75	1.8/0.3/2.1	CH4	LCX105A0-4A7N2
140	127	93	75	90	2.3/0.3/2.6	CH4	LCX140A0-4A7N2
168	153	112	90	110	2.5/0.3/2.8	CH5	LCX168A0-4A7N2
205	186	137	110	132	3.0/0.4/3.4	CH5	LCX205A0-4A7N2
261	237	174	132	160	4.0/0.4/4.4	CH5	LCX261A0-4A7N2
300	273	200	160	200	4.5/0.4/4.9	CH61	LCX300A0-4A7N2
385	350	257	200	250	5.5/0.5/6.0	CH61	LCX385A0-4A7N2
460	418	307	250	315	5.5/0.5/6.0	CH62	LCX460A0-4A7N2
520	473	347	250	355	6.5/0.5/7.0	CH62	LCX520A0-4A7N2
590	536	393	315	400	7.5/0.6/8.1	CH62	LCX590A0-4A7N2

Adjustable Frequency Drives

LCX9000 Drives

710-930 Vdc Liquid Cooled Inverter Unit

Drive Output							
Current Thermal $\mathrm{I}_{\mathrm{th}}(\mathrm{~A})$	Rated Cont.$I_{L}(A)$	Rated Cont.$I_{H}(A)$	Motor Output Power		Power Loss c/a/T (kW)	Chassis	Catalog Number
			Optimum Motor at $\mathrm{I}_{\mathrm{th}} \mathbf{4 0 0 \mathrm { V }}$ (kW)	Optimum Motor at $\mathrm{I}_{\mathrm{th}} 500 \mathrm{~V}(\mathrm{~kW})$			
170	155	113	110	160	4.5/0.2/4.7	CH61	LCX170A0-5A7N2
208	189	139	132	200	5.5/0.3/5.8	CH61	LCX208A0-5A7N2
261	237	174	160	250	5.5/0.3/5.8	CH61	LCX261A0-5A7N2
325	295	217	200	300	6.5/0.3/6.8	CH62	LCX325A0-5A7N2
385	350	257	250	355	7.5/0.4/7.9	CH62	LCX385A0-5A7N2
416	378	277	250	355	8.0/0.4/8.4	CH62	LCX416A0-5A7N2
460	418	307	300	400	8.5/0.4/8.9	CH62	LCX460A0-5A7N2
502	456	335	355	450	10.0/0.5/10.5	CH62	LCX502A0-5A7N2
590	536	393	400	560	10.0/0.5/10.5	CH63	LCX590A0-5A7N2
650	591	433	450	600	13.5/0.7/14.2	CH63	LCX650A0-5A7N2
750	682	500	500	700	16.0/0.8/16.8	CH63	LCX750A0-5A7N2
820	745	547	560	800	16.0/0.8/16.8	CH64	LCX820A0-5A7N2
920	836	613	650	850	18.0/0.9/18.9	CH64	LCX920A0-5A7N2
1030	936	687	700	1000	19.0/1.0/20.0	CH64	LCXH10A0-5A7N2
1180	1073	787	800	1100	21.0/10.1/20.1	CH64	LCXH11A0-5A7N2
1300	1182	867	900	1200	27.0/1.4/28.4	CH64	LCXH13A0-5A7N2
1500	1364	1000	1050	1400	32.0/1.6/33.6	CH64	LCXH15A0-5A7N2
1700	1545	1133	1150	1550	N/A	CH64	LCXH17A0-5A7N2
1850	1682	1233	1250	1650	34.2/1.8/36.0	2*CH64	LCXH18AO-5A7N2
2120	1927	1413	1450	1900	37.8/2.0/39.8	2*CH64	LCXH21A0-5A7N2
2340	2127	1560	1600	2100	48.6/2.5/51.1	2*CH64	LCXH23A0-5A7N2
2700	2455	1800	1850	2450	57.6/3.0/60.6	2*CH64	LCXH27A0-5A7N2
3100	2818	2066	2150	2800	N/A	2*CH64	LCXH31A0-5A7N2

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.
The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Board Kits

Option Kit Description ${ }^{1}$	Allowed Slot Locations ${ }^{2}$	Field Installed Catalog Number	Factory Installed Option Designator	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-NO)	B	OPTA2	-	\square	\square	\square	\square	-	\square	-
6 DI, 1 DO, 2 AI, 1A0, $1+10 \mathrm{Vdc}$ ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	-	\square	-	\square	\square	\square	\square
Extended I/O Cards										
2 RO, therm	B	OPTA3	A3	-	\square	\square	\square	\square	\square	\square
Encoder low Volt $+5 \mathrm{~V} / 15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA4	A4	-	\square	\square	\square	\square	\square	\square
Encoder high Volt $+15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA5	A5	-	\square	\square	\square	\square	\square	\square
Dual encoder $+15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA7	A7	-	\square	\square	\square	\square	\square	\square
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$	A	OPTA8	A8	-	\square	\square	\square	\square	\square	\square
3 DI (encoder 10-24V), out $+15 \mathrm{~V} /+24 \mathrm{~V}$, 2 DO (pulse+direction)—SPX only	C	OPTAE	AE	-	-	-	■	-	-	-
$6 \mathrm{DI}, 1$ ext +24 Vdc/EXT +24 Vdc	B, C, D, E	OPTB1	B1	-	-	-	-	-	\square	-
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	\square	\square
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	-	■	-	■	■	\square	\square
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	\square	-
1 ext +24 Vdc/EXT +24 Vdc, 3 Pt100	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	\square	\square
SPI, absolute encoder	C	OPTBB	BB	-	-	-	-	-	-	-
Communication Cards ${ }^{(3)}$										
Modbus	D, E	OPTC2	C2	-	\square	\square	\square	\square	\square	\square
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	-	\square	-	\square	■	\square	-
LonWorks	D, E	OPTC4	C4	-	\square	-	\square	\square	\square	-
Profibus DP (D9 connector)	D, E	OPTC5	C5	-	\square	\square	\square	\square	\square	\square
CanOpen (slave)	D, E	OPTC6	C6	\square	\square	-	\square	\square	\square	\square
DeviceNet	D, E	OPTC7	C7	\square	\square	-	\square	\square	\square	\square
Modbus (D9 Type connector)	D, E	OPTC8	C8	-	\square	-	\square	\square	\square	-
Modbus TCP	D, E	OPTCI	CI	\square						
Adapter-SPX only	D, E	OPTD1	D1	-	-	-	\square	\square	\square	\square
Adapter-SPX only	D, E	OPTD2	D2	\square	\square	-	\square	\square	\square	\square
RS-232 with D9 connection	D, E	OPTD3	D3	\square						
Keypad										
9000X Series standard keypad	-	$\begin{aligned} & \text { KEYPAD- } \\ & \text { STD } \end{aligned}$	-	-	-	-	-	-	-	\square
9000X Series remote mount keypad unit (keypad not included, includes 10 ft cable, keypad holder, mounting hardware)	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{Al}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Line Reactors

The line reactor carries out several functions in the liquid cooled drive. Connection of the line reactor is necessary except if you have a component in your system that performs the same tasks (e.g. a transformer). The line
reactor is needed as an essential component for motor control, to protect the input and DC-link components against abrupt changes of current and voltage as well as to function as a protection
against harmonics. The line reactors are included in the standard delivery of liquidcooled drives (not inverters). However, you can also order your drive without a line reactor.

Line Reactor Specifications

Drive Rating 480V	Drive Rating 690V	Thermal Current (A)	Nominal Inductance $(\mu \mathrm{H}) \mathrm{A} / \mathrm{B}$	Calculated Loss (W)	Choke Catalog Number (690 Vac)
16 to 22A	12 to 23A	23	1900	145	CHK0023N6AO
31 to 38A	31 to 38A	38	1100	170	CHK0038N6A0
45 to 61A	46 to 62A	62	700	210	CHK0062N6A0
72 to 87A	72 to 87A	87	480	250	CHK0087N6AO
105 to 140A	105 to 140A	145	290	380	CHK0145N6AO
168 to 261A	170 to 261A	261	139/187	460	CHK0261N6AO
300 to 385A	$\begin{aligned} & 325 \text { to } 385 \mathrm{~A} \\ & 820 \text { to } 1180 \mathrm{~A} \text { (2) } \end{aligned}$	400	90/126	570	CHK0400N6AO
$\begin{aligned} & 460 \text { to } 520 \mathrm{~A} \\ & 1370 \mathrm{~A}{ }^{2} \end{aligned}$	$\begin{aligned} & 416 \text { to } 502 \mathrm{~A} \\ & 1300 \text { to } 1500 \mathrm{~A} \end{aligned}$	520	65/95	610	CHK0520N6AO
$\begin{aligned} & 590 \text { to 650A } \\ & 1640 \mathrm{~A} \text { (2) } \end{aligned}$	590 to 650A	650	51/71	840	CHK0650N6A0
$\begin{aligned} & 730 \mathrm{~A} \\ & 2060 \mathrm{~A} \end{aligned}$	-	730	45/61	850	CHK0730N6AO
$\begin{aligned} & 820 \mathrm{~A} \\ & 2300 \mathrm{~A}(2) \end{aligned}$	750A	N/A	N/A	N/A	CHK0820N6AO
920 to 1030A	-	1000	30/41	950	CHK1030N6A0
1150A	-	1150	26/36	1000	CHK1150N6AO

Dimensions, see Page V6-T2-232.
Notes
(1) Inductances for different supply voltages: $A=400-480 \mathrm{Vac} ; B=500-690 \mathrm{Vac}$.
(2) Drives require three chokes of the designated catalog number with six-pulse supply.

Technical Data and Specifications

LCX9000 Products

Description	Specification
General Specifications	
Line voltage	400 to $500 \mathrm{Vac} ; 525$ to $690 \mathrm{Vac} ;(-10 \%$ to $10 \%)$ 465 to $800 \mathrm{Vdc} ; 640$ to $1100 \mathrm{Vdc} ;(-0$ to 0%)
Frequency	50/60 Hz
Line voltage variation	-10\% to 10\%
Input frequency variation	$45-66 \mathrm{~Hz}$
Continuous output current	Rated current at incoming cooling liquid temperature of $30^{\circ} \mathrm{C}$
Output frequency	$0-320 \mathrm{~Hz}$
Drive efficiency	>95\%
Power factor (displacement)	0.96
Liquid coolant pressure	87 psi (6 bar) maximum
Liquid coolant flow rate	1.3 to 7.9 gal./min. (5 to 30 liter/min.) minimum depending on drive size
Liquid coolant fittings	Standard quick connect, NPT
Operating ambient temperature	$-10 / 50^{\circ} \mathrm{C}$
Storage temperature	$-40 / 70^{\circ} \mathrm{C}$
Humidity	95\% maximum (non-condensing)
Altitude	$3300 \mathrm{ft}(1000 \mathrm{~m})$ maximum without derating
Enclosure	IPOO
Warranty	Standard terms, 3 years with certified start-up
Mains Connection	
Input voltage ($\mathrm{V}_{\text {in }}$)	$400-500 \mathrm{Vac} ; 525-690 \mathrm{Vac} ;(-10 \%-10 \%)$ 465-800 Vdc; 640-1100 Vdc; (-0-0\%)
Input frequency ($\mathrm{f}_{\text {in }}$)	45-66Hz
Connection to mains	Once per minute or less (normal case)
Motor Connection	
Output voltage	$0-V_{\text {in }}$
Continuous output current	Rated current at nominal inflow cooling water temperature of $30^{\circ} \mathrm{C}$; Overload $2 \mathrm{sec} . / 20 \mathrm{sec}$.
Starting current	Rated current at 2 sec./20 sec. if output frequency $<30 \mathrm{~Hz}$ and temperature of heatsink $<149^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$
Output frequency	$0-320 \mathrm{~Hz}$ (standard); 7200 Hz (special software)
Frequency resolution	Application dependent
Control Characteristics	
Control method	Frequency control (V/f) Open loop: Sensorless vector control Closed loop: Frequency control Closed loop: Vector control
Switching frequency	Adjustable with parameter 2.6.9
480 V (1)	Up to and including 61-Amp size: $1-16 \mathrm{kHz}$ (factory default, 10 kHz) From 72-Amp size: $1-12 \mathrm{kHz}$ (factory default, 3.6 kHz)
575 V (1)	1-6kHz (factory default, 1.5kHz)
Frequency reference	Analog input: resolution 0.1% (10 bits); accuracy $\pm 1 \%$ Panel reference: resolution 0.01 Hz
Field weakening point	$30-320 \mathrm{~Hz}$
Acceleration time	0.1-3000 seconds
Deceleration time	0.1-3000 seconds
Braking torque	DC brake: $30 \% \times \mathrm{T}_{\mathrm{n}}$ (without brake option)

Description	Specification
Ambient Conditions	
Ambient operating temperature	$14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$, no frost to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ at $\mathrm{l}_{\text {th }}$ 122 to $158^{\circ} \mathrm{F}\left(50\right.$ to $\left.70^{\circ} \mathrm{C}\right)$, derating required
Storage temperature	$\begin{aligned} & -40^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F}\left(-40 \text { to } 70^{\circ} \mathrm{C}\right) \\ & \text { No liquid in heatsink under } 32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right) \end{aligned}$
Relative humidity	5-96\% RH, noncondensing, no dripping water
Air quality	Chemical vapors: IEC 721-3-3, unit in operation, class 3C2 Mechanical particles: IEC 721-3-3, unit in operation, class 3 S2 (no conductive dust allowed); No corrosive gases
Altitude	Up to $1,000 \mathrm{~m}$: 100% load capacity (no derating) Above $1,000 \mathrm{~m}$: Derating of 1% per each 100 m required
Vibration	EN 50178, EN 60068-2-6; 5-150 Hz Displacement amplitude: 0.25 mm (peak) at $3-31 \mathrm{~Hz}$ Max. acceleration amplitude: 1 G at $31-150 \mathrm{~Hz}$
Shock	EN 50178, EN 60068-2-27, UPS drop test (for applicable UPS weights) Storage and shipping: Max. 15G, 11 ms (in package)
Enclosure class	IP00 open frame standard in entire kW/hp range
EMC	
Immunity	Fulfils all EMC immunity requirements
Emissions	EMC level N ; EMC level T for IT networks
Safety	
Approvals	EN 50178, EN 60204-1, CE, UL, CUL, FI, GOST R, IEC 61800-5 (See unit nameplate for more detailed approvals.)
Control Connections	
Analog input voltage	0 to $+10 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=200$ kohm (-10 V to +10 V joystick control) Resolution 0.1%; accuracy $\pm 1 \%$
Analog input current	$0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohm differential
Digital inputs	6 positive or negative logic; 18-24 Vdc
Auxiliary voltage	$+24 \mathrm{~V}, \pm 15 \%$, max. 250 mA
Output reference voltage	$+10 \mathrm{~V},+3 \%$, max. load 10 mA
Analog output	0(4)-20 mA, R R max. 500 ohm Resolution 10 bits; accuracy $\pm 2 \%$
Digital outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay outputs	Two programmable change-over relay outputs Switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}$, $125 \mathrm{Vdc} / 0.4 \mathrm{~A}$ Min. switching load: $5 \mathrm{~V} / 10 \mathrm{~mA}$

Note
(1) Derating required if higher switching frequency than the default is used.

Adjustable Frequency Drives
LCX9000 Drives

LCX9000 Products, continued

Description Protections	Specification
Overvoltage protection 480 V	911 V
575 V	1200 V
Undervoltage protection	
480 V	333 V
575 V	461 V
Ground fault protection	In case of ground fault in motor or motor cable, only the drive is protected
Mains supervision	Trips if any of the input phases are missing (drives only)
Motor phase supervision	Trips if any of the output phases are missing
Unit overtemperature protection	$149^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$ for heatsink, $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$ for circuit boards
Alarm limit	$158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$ for heatsink, $185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right)$ for circuit boards
Trip limit	

Description	Specification
Protections, continued	
Overcurrent protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short-circuit protection	Yes (+24V and +10 V reference voltages)
Liquid Cooling	
Allowed cooling agents	Drinking water Water-glycol mixture
Temperature of cooling agent	32 to $86^{\circ} \mathrm{F}\left(0\right.$ to $\left.30^{\circ} \mathrm{C}\right)$ at I th for input; 86 to $149^{\circ} \mathrm{F}\left(30\right.$ to $\left.65^{\circ} \mathrm{C}\right)$ Max. temperature rise during circulation: $9^{\circ} \mathrm{F}\left(5^{\circ} \mathrm{C}\right)$, no condensation allowed
System max. working pressure	87 psi (6 bar)
System max. peak pressure	580 psi (40 bar)
Pressure loss (at nominal flow)	Varies according to size

Wiring Diagrams

Cooling System Diagrams

Example of a Typical Cooling System

Example PI-Diagram of a Typical Cooling System and Connections

I/O Board Diagrams

A9 Option Board Control Wiring

Dotted lines indicate the connections for inverted signals

Adjustable Frequency Drives
LCX9000 Drives

A2 Option Board Wiring

Basic Relay Board A2	

Dimensions

Approximate Dimensions in Inches (mm)

Line Reactors

Sizes Up To 61A

Sizes Larger Than 61A

Catalog Number	H1	W1	D1	Weight Lbs (kg)
CHK0023N6A0	$7.01(178)$	$9.06(230)$	$4.76(121)$	$22(10)$
CHK0038N6A0	$8.23(209)$	$10.63(270)$	$5.71(145)$	$33(15)$
CHK0062N6A0	$8.39(213)$	$11.81(300)$	$6.30(160)$	$44(20)$
CHK0087N6AO	$9.13(232)$	$11.81(300)$	$6.69(170)$	$57(26)$
CHK0145N6A0	$11.50(292)$	$11.81(300)$	$7.28(185)$	$82(37)$
CHK0220N6A0	$12.05(306)$	$13.86(352)$	$7.28(185)$	$119(54)$
CHK0325N6A0	$13.66(347)$	$13.86(352)$	$7.28(185)$	$132(60)$
CHK0460N6AO	$16.54(423)$	$13.70(348)$	$9.41(239)$	$203(92)$
CHK0520N6A0	$17.60(447)$	$15.51(394)$	$10.71(272)$	$231(105)$
CHK0590N6A0	$20.43(519)$	$15.51(394)$	$10.71(272)$	$276(125)$
CHK0650N6A0	$20.51(521)$	$15.51(394)$	$10.71(272)$	$276(125)$
CHK0750N6A0	$24.72(628)$	$15.51(394)$	$11.10(282)$	$331(150)$
CHK0820N6AO	$24.72(628)$	$15.51(394)$	$11.10(282)$	$331(150)$
CHK1000N6A0	$22.68(576)$	$19.57(497)$	$11.85(301)$	$441(200)$
CHK1150N6A0	$22.83(580)$	$19.57(497)$	$11.85(301)$	$441(200)$

Approximate Dimensions in Inches (mm)

LCX9000 Drives

Chassis Size, CH3

Chassis Size, CH4

Adjustable Frequency Drives
LCX9000 Drives

Approximate Dimensions in Inches (mm)
2
Chassis Size, CH5

Voltage	Amps	H1	H2	H3	D1	W1	W2	W3	R1 Dia.	R2 Dia.	Weight
Lbs (kg)											
$380-500 ~ V a c ~$	$168-261$	21.77	1.30	19.88	10.39	9.69	3.94	7.87	0.51	-	$88(40)$
		(553.0)	(33.0)	(505.0)	(264.0)	(246)	(100.0)	(200.0)	(13.0)		

Chassis Size, CH61

Approximate Dimensions in Inches (mm)

Liquid-Cooled Inverter-Chassis Size, CH62

Chassis Size, CH63

Adjustable Frequency Drives

LCX9000 Drives

Approximate Dimensions in Inches (mm)

Liquid-Cooled Inverter with Mounting Bracket, Chassis Size CH64, IP90

Bottom

Top

| Right Side | | Front | | | | Left Side | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Voltage | Amps | H1 | H2 | H3 | D1 | W1 | W2 | R1 Dia. |
| $540-675 \mathrm{Vdc}$ | $1370-4140$ | 36.38 | 1.03 | 34.37 | 15.35 | 29.37 | 7.87 | 0.43 |
| $710-930 \mathrm{Vdc}$ | $820-3100$ | (924) | (26) | (873) | (390) | (746) | (200) | (11) |

Approximate Dimensions in Inches (mm)
Chassis Size, CH72

Voltage	Amps	H1	H2	H3	D1	W1	R1 Dia.	R2 Dia.	Weight Lbs (kg)
$380-500$ Vac	$460-730$	42.38	1.57	39.37	14.65	7.87	0.55	0.51	$198(90)$
$525-690$ Vac	$261-502$	(1076.5)	(40.0)	(1000.0)	(372.0)	(200.0)	(14.0)	(13.0)	

2.8
 Adjustable Frequency Drives
 LCX9000 Drives

Approximate Dimensions in Inches (mm)
Chassis Size, CH74

Control Unit

SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products

Product Description

Eaton offers a comprehensive range of common DC bus drive products. The product family covers a number of front-end units and inverter units in the entire power range from 1-1/2 to 2000 horsepower at 460 V and 690 V . The drive components are built on the SPX9000 technology.

Front-End Units

The front-end units convert a mains AC voltage and current into a DC voltage and current. The power is transferred from the mains to a common DC bus (and, in certain cases, vice versa).

The SPA (active front-end) unit is a bidirectional (regenerative) power converter for the front end of a common DC bus drive line up. An external LCL filter is used at the input. This unit is suitable in applications where low mains harmonics are required.

Contents

Description
SPA9000/SPN9000/SPI9000 Page

The SPN (non-regenerative front-end) unit is a unidirectional (motoring) power converter for the front-end of a common DC bus drive line-up. The device operates as a diode bridge using diode/ thyristor components. A dedicated external choke is used at the input. The unit has the capacity to charge a common DC bus. This unit is suitable as a rectifying device when a "normal" level of harmonics is accepted and no regeneration to the mains is required.

Inverter Unit

The SPI9000 Inverter Unit is a bidirectional DC-fed power inverter for the supply and control of AC motors. The inverter is supplied from a common DC bus drive lineup. A charging circuit is needed in case a connection to a live $D C$ bus is required. The DC side charging circuit is integrated up to 75 kW (FR4-FR8) and external for higher power ratings (FI9-FI14).

Application Description

The common DC bus product portfolio fulfills all solution demands with a flexible architecture.
Front end units are selected according to the level of harmonics and power requirements. Typical drive system configurations are illustrated the following figures.

Product Comparison

Advantages over Conventional Front Ends
Eaton Front Ends vs. Conventional

	Non-Regenerative Front End	Active Front End	Conventional Regenerative Front End (1)
Input device	Choke (L)	Filter (LCL)	Choke or auto-transformer (L)
Bridge type	Diode/thyristor bridge	IGBT bridge, two-level type	Anti-parallel connected thyristor bridge
Type of operation	Controlled half-bridge	High frequency modulation $(1.5$ to 3.6 kHz$)$	Firing angle controlled
Direction of power	Motoring	Motoring and regenerating	Motoring and regenerating
Charging	Constant current	External required	Usually internal
DC voltage	Nominal (approx. 1.35 alternative $\left.U_{N}\right)$	Stable at $+10 \%$ of nominal (approx. 110% of 1.35 alternative $\left.U_{N}\right)$	Lowered DC voltage for commutation margin (e.g. 17% fi approx. 83\% of 1.35 alternative U_{N}) or autotransformer on regenerative bridge
THD	Similar to six-pulse bridge normal $<40 \%$	Very low	Similar to six-pulse bridge or worse

Note
(1) Conventional regenerative front end (a.k.a. "anti-parallel thyristor bridge") is not available from Eaton.

Features

Standard Features

Feature	SPI9000 FR4, 6, 7	FR8	FI9-FI14	SPA FI9-FI14	SPN FI9
IPOO	-	■	■	■	■
IP21	■	-	-	-	-
Air cooling	■	■	■	■	■
Standard board	\square	\square	\square	■	
Varnished board	-	-	-	-	-
Alphanumeric keypad	\square	\square	\square	■	-
EMC class T (EN 61800-3 for IT networks)	\square	\square	\square	\square	■
Safety CE/UL	\square	\square	\square	\square	-
Input choke	-	-	-	-	■
LCL filter	-	-	-	\square	-
No integrated charging	-	-	\square	■	-
Integrated charging (DC side)	■	■	-	-	\square
Diode/thyristor rectifier	-	-	-	-	-
IGBT	\square	\square	\square	\square	-

Standards and Certifications

- CE
- UL
- cUL
- EN 61800-5-1 (2003)

C \in (4L) , (4L)

Catalog Number Selection

Active Front End

Adjustable Frequency Drives
SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products

Non-Regenerative Front End

SP19000 Inverter Unit

Product Selection

SPA9000 Active Front End 480V

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	
	$\mathrm{L}_{\text {-cont }}(\mathrm{A})$	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text { coont }}(\mathrm{A})$	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{25}(\mathrm{~A})$	Catalog Number
F19	261	287	205	308	349	SPA205AO-4A3N1
F110	460	506	385	578	693	SPA385AO-4A3N1
F113	1300	1430	1150	1725	2070	SPAH11A0-4A3N1

SPN9000 Non-Regenerative Front End 480V

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	
	$\mathrm{I}_{\text {-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text { cont }}(\mathrm{A})$	$\mathrm{I}_{\text {min }}(\mathrm{A})$	$\mathrm{I}_{2 \mathrm{~s}}(\mathrm{~A})$	Catalog Number
FI9	520	572	460	690	828	SPN460A0-4A3N1

SP19000 Inverter Unit 480V

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	
	$\mathrm{I}_{\text {L-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{2 \mathrm{~s}}(\mathrm{~A})$	Catalog Number
FR4	4.3	4.7	3.3	5	6.2	SPI003A1-4A3N1
	9	9.9	7.6	11.4	14	SPI007A1-4A3N1
	12	13.2	9	13.5	18	SPI009A1-4A3N1
FR6	16	17.6	12	18	24	SPI012A1-4A3N1
	23	25.3	16	24	32	SPI016A1-4A3N1
	31	34	23	35	46	SPIO23A1-4A3N1
	38	42	31	47	62	SPI031A1-4A3N1
	46	51	38	57	76	SPI038A1-4A3N1
FR7	72	79	61	92	122	SPI061A1-4A3N1
	87	96	72	108	144	SPI072A1-4A3N1
	105	116	87	131	174	SPI087A1-4A3N1
FR8	140	154	105	158	210	SPI105AO-4A3N1
FI9	170	187	140	210	280	SPI140A0-4A3N1
	205	226	170	255	336	SPI170AO-4A3N1
	261	287	205	308	349	SPI205AO-4A3N1
	300	330	245	379	444	SPI245A0-4A3N1
F10	385	424	300	450	540	SPI300AO-4A3N1
	460	506	385	578	693	SPI385A0-4A3N1
	520	572	460	690	828	SPI460A0-4A3N1
FI12	590	649	520	780	936	SPI520A0-4A3N1
	650	715	590	885	1062	SPI590AO-4A3N1
	730	803	650	975	1170	SPI650A0-4A3N1
	820	902	730	1095	1314	SPI730A0-4A3N1
	920	1012	820	1230	1476	SPI820A0-4A3N1
	1030	1133	920	1380	1656	SPI920A0-4A3N1
F113	1150	1265	1030	1545	1854	SPIH10A0-4A3N1
	1300	1430	1150	1720	2070	SPIH11A0-4A3N1
	1450	1595	1300	1950	2340	SPIH13A0-4A3N1
FI14	1770	1947	1600	2400	2880	SPIH16A0-4A3N1
	2150	2365	1940	2910	3492	SPIH19A0-4A3N1

Note
For filter and line reactor information, see Page V6-T2-245.

Adjustable Frequency Drives
SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products

SPN9000 Non-Regenerative Front End 575V

Frame	Low Overload (AC Current)		High Overload (AC Current)		Imax	
	$\mathrm{I}_{\text {L-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{2 \mathrm{~s}}(\mathrm{~A})$	Catalog Number
FI9	600	660	510	732	888	SPN510A0-5A3N1

SPI9000 Inverter Unit 575V

Frame	Low Overload (AC Current)		High Overload (AC Current)		$\begin{aligned} & \text { Imax } \\ & I_{2 s}(A) \end{aligned}$	Catalog Number
	$\mathrm{I}_{\text {L-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$	$\mathrm{I}_{\mathrm{H} \text {-cont }}(\mathrm{A})$	$\mathrm{I}_{1 \text { min }}(\mathrm{A})$		
FR6	4.5	5	3.2	5	6.4	SPI003A1-5A3N1
	5.5	6	4.5	7	9	SPI004A1-5A3N1
	7.5	8	5.5	8	11	SPI005A1-5A3N1
	10	11	7.5	11	15	SPI007A1-5A3N1
	13.5	15	10	15	20	SPI010A1-5A3N1
	18	20	13.5	20	27	SPI013A1-5A3N1
	22	24	18	27	36	SPI018A1-5A3N1
	27	30	22	33	44	SPI022A1-5A3N1
	34	37	27	41	54	SPI027A1-5A3N1
FR7	41	45	34	51	68	SPI034A1-5A3N1
	52	57	41	62	82	SPI041A1-5A3N1
FR8	62	68	52	78	104	SPI052A0-5A3N1
	80	88	62	93	124	SPI062A0-5A3N1
	100	110	80	120	160	SPI080A0-5A3N1
FI9	125	138	100	150	200	SPI100A0-5A3N1
	144	158	125	188	213	SPI125A0-5A3N1
	170	187	144	216	245	SPI144A0-5A3N1
	208	229	170	255	289	SPI170A0-5A3N1
F110	261	287	208	312	375	SPI208A0-5A3N1
	325	358	261	392	470	SPI261A0-5A3N1
	385	424	325	488	585	SPI325A0-5A3N1
F112	460	506	385	578	693	SPI385A0-5A3N1
	502	552	460	690	828	SPI460A0-5A3N1
	590	649	502	753	904	SPI502A0-5A3N1
	650	715	590	885	1062	SPI590A0-5A3N1
	750	825	650	975	1170	SPI650A0-5A3N1
FI13	920	1012	820	1230	1476	SPI820A0-5A3N1
	1030	1133	920	1380	1656	SPI920A0-5A3N1
	1180	1298	1030	1464	1755	SPIH10A0-5A3N1
F114	1500	1650	1300	1950	2340	SPIH13A0-5A3N1
	1900	2090	1500	2250	2700	SPIH15A0-5A3N1
	2250	2475	1900	2782	3335	SPIH19A0-5A3N1

Note
For filter and line reactor information, see Page V6-T2-245.

LCL Filters

LCL Filters for Active Front End (480V)

Amps	Catalog Number
10	REG 1050
18	REG 1850
32	REG $\mathbf{3 2 5 0}$
48	REG $\mathbf{4 8 5 0}$
75	REG $\mathbf{7 5 5 0}$
110	REG 11050
180	REG $\mathbf{1 8 0 5 0}$

Amps	Catalog Number
270	REG $\mathbf{2 7 0 5 0}$
410	REG $\mathbf{4 1 0 5 0}$
580	REG $\mathbf{5 8 0 5 0}$
840	REG $\mathbf{8 4 0 5 0}$
1160	REG $\mathbf{1 1 6 0 5 0}$
1480	REG $\mathbf{1 4 8 0 5 0}$

LCL Filters for Active Front End (690V)

Amps	Catalog Number	Amps	Catalog Number
14	REG 1460	287	REG 28760
23	REG 2360	390	REG 39060
35	REG 3560	460	REG 46060
52	REG 5260	620	REG 62060
85	REG 8560	780	REG 78060
122	REG 12260	920	REG 92060
185	REG 18560	1180	REG 118060

Line Reactor		
Line Reactor for Non-Regenerative Front End (480/575VV)		
Amps	Watts Losses	Catalog Number
600	493	CHK600

Adjustable Frequency Drives
SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products

Options

9000X Series Option Board Kits

The 9000X Series drives can accommodate a wide selection of expander and adapter option boards to customize the drive for your application needs. The drive's control unit is designed to accept a total of five option boards.
The 9000X Series factory installed standard board configuration includes an A9 I/O board and an A2 relay output board, which are installed in slots A and B.

Option Board Kits

Option Kit Description ${ }^{\text {(1) }}$	Allowed Slot Locations ${ }^{2}$	Field Installed Catalog Number	Factory Installed Option Designato	SVX Ready Programs						
				Basic	Local/ Remote	Standard	MSS	PID	Multi-P.	PFC
Standard I/O Cards										
2 RO (NC-N0)	B	OPTA2	-	\bullet	\bullet	\bullet	\square	-	-	-
$6 \mathrm{DI}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}, 1+10 \mathrm{Vdc}$ ref, 2 ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	A	OPTA9	-	-	-	-	-	-	-	-
Extended I/O Cards										
2 RO , therm	B	OPTA3	A3	-	-	-	\bullet	\bullet	\bullet	\bullet
Encoder low volt $+5 \mathrm{~V} / 15 \mathrm{~V} 24 \mathrm{~V}$	C	OPTA4	A4	-	-	-	\bullet	-	-	\bullet
Encoder high volt $+15 \mathrm{~V} / 24 \mathrm{~V}$	C	OPTA5	A5	-	-	-	-	-	-	-
Double encoder	C	OPTA7	A7	-	-	-	\square	\square	-	\square
$6 \mathrm{Dl}, 1 \mathrm{DO}, 2 \mathrm{Al}, 1 \mathrm{AO}$	A	OPTA8	A8	-	-	-	\bullet	\bullet	\square	-
3 DI (encoder 10-24V), out $+15 \mathrm{~V} /+24 \mathrm{~V}$, 2 DO (pulse+direction)	C	OPTAE	AE	-	-	\cdot	-	-	-	-
$6 \mathrm{Dl}, 1$ ext $+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}$	B, C, D. E	OPTB1	B1	-	-	-	-	-	-	-
1 RO (NC-NO), 1 RO (NO), 1 therm	B, C, D, E	OPTB2	B2	-	-	-	-	-	-	\square
1 Al (mA isolated), 2 AO (mA isolated), 1 ext $+24 \mathrm{Vdc} / E X T+24 \mathrm{Vdc}$	B, C, D, E	OPTB4	B4	-	-	\bullet	-	-	-	-
3 RO (NO)	B, C, D, E	OPTB5	B5	-	-	-	-	-	-	-
$1 \mathrm{ext}+24 \mathrm{Vdc} / \mathrm{EXT}+24 \mathrm{Vdc}, 3 \mathrm{Pt100}$	B, C, D, E	OPTB8	B8	-	-	-	-	-	-	-
1 RO (NO), 5 DI 42-240 Vac input	B, C, D, E	OPTB9	B9	-	-	-	-	-	-	-
SPl, absolute encoder	C	OPTBB	BB	-	-	-	-	-	-	-
Communication Cards ${ }^{\text {(}}$										
Modbus	D, E	OPTC2	C2	-	-	-	-	\bullet	-	-
Johnson Controls N2	D, E	OPTC2	CA	-	-	-	-	-	-	-
Modbus TCP	D, E	OPTCI	CI	-	-	-	-	\square	\square	-
BACnet	D, E	OPTCJ	CJ	-	\bullet	-	\bullet	-	\bullet	-
Ethernet IP	D, E	OPTCK	CK	-	\cdot	-	-	-	-	-
Profibus DP	D, E	OPTC3	C3	-	\square	-	\bullet	\square	\square	-
LonWorks	D, E	OPTC4	C4	-	\bullet	\bullet	\bullet	-	\bullet	-
Profibus DP (D9 connector)	D, E	OPTC5	C5	-	-	-	-	-	-	\bullet
CanOpen (slave)	D, E	OPTC6	C6	-	\square	-	\square	\square	\square	-
DeviceNet	D, E	OPTC7	C7	-	\square	-	-	\square	\square	-
Modbus (D9 type connector)	D, E	OPTC8	C8	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-
Adapter	D, E	OPTD1	D1	-	-	-	\square	-	-	-
Adapter	D, E	OPTD2	D2	-	-	-	\bullet	-	\square	-
RS-232 with D9 connection	D, E	OPTD3	D3	-	\bullet	\bullet	-	-	\bullet	-
Keypad										
9000X Series local/remote keypad (replacement keypad)	-	KEYPADLOC/REM	-	-	-	-	-	-	-	-
9000X Series remote mount keypad unit (keypad not included, includes 10 ft cable, keypad holder, mounting hardware)	-	OPTRMT-KIT-9000X	-	-	-	-	-	-	-	-
9000X Series RS-232 cable, 13 ft	-	PP00104	-	-	-	-	-	-	-	-

Notes

(1) $\mathrm{AI}=$ Analog Input; $\mathrm{AO}=$ Analog Output, $\mathrm{DI}=$ Digital Input, $\mathrm{DO}=$ Digital Output, $\mathrm{RO}=$ Relay Output
(2) Option card must be installed in one of the slots listed for that card. Slot indicated in bold is the preferred location.
(3) OPTC2 is a multi-protocol option card.

Technical Data and Specifications

SPA9000/SPN9000/SP19000	
Description	Specification
Supply Connection	
Input voltage $\mathrm{U}_{\text {in }}(\mathrm{AC})$ front end modules	380-500 Vac/525-690 Vac -10\% to 10\%
Input voltage $\mathrm{U}_{\text {in }}(\mathrm{DC})$ inverter	$465-800 \mathrm{Vdc} / 640-1100 \mathrm{Vdc}-0 \%$ to 0%, the waviness of the inverter supply voltage, formed in rectification of the electric network's alternating voltage in basic frequency, must be less than 50 V peak-to-peak
Output voltage $\mathrm{U}_{\text {out }}(\mathrm{AC})$ inverter	$3 \sim 0-U_{\text {in }} / 1.4$
Output voltage $\mathrm{U}_{\text {out }}(\mathrm{DC})$ active front end module	$10.10 \times 1.35 \times \mathrm{U}_{\text {in }}$ (factory default)
Output voltage $\mathrm{U}_{\text {out }}(\mathrm{DC})$ non-regenerative front end module	$1.35 \times \mathrm{U}_{\text {in }}$
Ambient Conditions	
Ambient operating temperature	$\begin{aligned} & 14 \text { (no frost) to } 122^{\circ} \mathrm{F}\left(-10 \text { to } 50^{\circ} \mathrm{C}\right): \mathrm{I}_{\mathrm{H}} \\ & 14 \text { (no frost) to } 104^{\circ} \mathrm{F}\left(-10 \text { to } 40^{\circ} \mathrm{C}\right): \mathrm{I}_{\mathrm{L}} \end{aligned}$
Storage temperature	-40 to $158^{\circ} \mathrm{F}\left(-40\right.$ to $70^{\circ} \mathrm{C}$)
Relative humidity	0 to 95\% RH, non-condensing, non-corrosive, no dripping water
Air quality	
Chemical vapors	IEC 721-3-3, unit in operation, class 3C2
Mechanical particles	IEC 721-3-3, unit in operation, class 3S2
Altitude	100% load capacity (no derating) up to 1000 m 1% derating for each 100 m above 1000 m ; max. 3000 m
Vibration	$5-150 \mathrm{~Hz}$
EN50178/EN60068-2-6	Displacement amplitude 0.25 mm (peak) at 3-15.8 Hz Max acceleration amplitude 1 G at $15.8-150 \mathrm{~Hz}$
Shock EN50178, EN60068-2-27	UPS Drop Test (for applicable UPS weights) Storage and shipping: max 15G, 11 ms (in package)
Cooling capacity required	Approximately 2\%
Cooling air required	FR4 41 cfm, FR6 250 cfm, FR7 250 cfm, FR8 383 cfm FI9 677 cfm, Fl10 824 cfm, Fl12 1648 cfm, Fl13 2472 cfm
Unit enclosure class	FR4-FR7 NEMA Type 1/IP21; FR8, FI9-FI14 chassis (IP00)
EMC (at fault settings)	
Immunity	Fulfill all EMC immunity requirements
Safety	
Approvals	CE, UL, cUL, EN 61800-5-1 (2003), see unit nameplate for more detailed approvals
Control Connections	
Analog input voltage	$0-10 \mathrm{~V}, \mathrm{~B}_{\mathrm{i}}=200$ kohms, (-10 V to 10 V joystick control) Resolution 0.1%, accuracy $\pm 1 \%$
Analog input current	$0(4)-20 \mathrm{~mA}, \mathrm{R}_{\mathrm{i}}=250$ ohms differential
Digital inputs	6 , positive or negative logic; 18-30 Vdc
Auxiliary voltage	+24V, $\pm 15 \%$, max. 250 mA
Output reference voltage	+10V, $+3 \%$, max. load 10 mA
Analog output	0 (4)-20 mA; RL max. 500 ohms; resolution 10 bits Accuracy $\pm 2 \%$
Digital outputs	Open collector output, $50 \mathrm{~mA} / 48 \mathrm{~V}$
Relay outputs	2 programmable change-over relay outputs Switching capacity: $24 \mathrm{Vdc} / 8 \mathrm{~A}, 250 \mathrm{Vac} / 8 \mathrm{~A}, 125 \mathrm{Vdc} / 0.4 \mathrm{~A}$ Min. switching load: 5V/10 mA

Adjustable Frequency Drives
SPA9000/SPN9000/SPI9000 Common DC Bus Drive Products

SPA9000/SPN9000/SPI9000, continued

Description	Specification
Protections	$480 \mathrm{~V} / 911 \mathrm{Vdc}, 575 \mathrm{~V} / 1200 \mathrm{Vdc}$
Overvoltage protection	$480 \mathrm{~V} / 333 \mathrm{Vdc}, 575 \mathrm{~V} / 460 \mathrm{Vdc}$
Undervoltage protection	In case of ground fault in motor or motor cable, only the inverter is protected
Ground fault protection	Trips if any of the output phases is missing
Motor phase supervision	Yes
Overcurrent protection	Yes
Unit overtemperature protection	Yes
Motor overload protection	Yes
Motor stall protection	Yes
Motor underload protection	Yes
Short circuit protection of 24V and 10V reference voltages	

Input Fuses

SHT fuses can be assembled into same-size DIN fuse base.
SPA9000/SPN9000/SPI9000

Module Component	Frame	Bussman Fuse Type (aR)	Size	$\mathrm{U}_{\mathrm{N}}(\mathrm{V})$	$I_{N}(A)$	Oty.
Inverter Units						
SPI003A1-4	FR4	170M1560	0	690	20	2
SPI007A1-4	FR4	170M1562	0	690	63	2
SPI009A1-4	FR4	170M1562	0	690	63	2
SPI012A1-4	FR6	170M1565	0	690	63	2
SPI016A1-4	FR6	170M1565	0	690	63	2
SPI023A1-4	FR6	170M1565	0	690	63	2
SPI031A1-4	FR6	170M1567	0	690	100	2
SPI038A1-4	FR6	170M1567	0	690	100	2
SPI061A1-4	FR7	170M1570	0	690	200	2
SPI072A1-4	FR7	170M1570	0	690	200	2
SPI087A1-4	FR7	170M1571	0	690	250	2
SPI105A0-4	FR8	170M3819	DIN1	690	400	2
SPI140A0-4	FR8	170M3819	DIN1	690	400	2
SPI170A0-4	FR8	170M3819	DIN1	690	400	2
SPI205A0-4	FI9	170M6812	DIN3	690	800	2
SPI245A0-4	FI9	170M6812	DIN3	690	800	2
SPI300A0-4	F110	170M8547	3SHT	690	1250	2
SPI385A0-4	Fl10	170M8547	3SHT	690	1250	2
SPI460A0-4	F110	170M8547	3SHT	690	1250	2
SPI520A0-4	FI12	170M8547	3SHT	690	1250	2×2
SPI590A0-4	F112	170M8547	3SHT	690	1250	2×2
SPI650A0-4	F112	170M8547	3SHT	690	1250	2×2
SPI730A0-4	FI12	170M8547	3SHT	690	1250	2×2
SPI820A0-4	Fl12	170 M 8547	3SHT	690	1250	2×2
SPI920A0-4	F112	170M8547	3SHT	690	1250	2×2
SPIH10AO-4	F113	170M8547	3SHT	690	1250	6
SPIH11AO-4	F113	170M8547	3SHT	690	1250	6
SPIH13AO-4	F113	170M8547	3SHT	690	1250	6
SPIH16AO-4	F114	170 M 8547	3SHT	690	1250	2×6
SPIH19AO-4	Fl14	170 M 8547	3SHT	690	1250	2×6
SPIH23AO-4	Fl14	170 M 8547	3SHT	690	1250	2×6

SHT fuses can be assembled into same-size DIN fuse base.
SPA9000/SPN9000/SPI9000, continued

Module Component	Frame	Bussman Fuse Type (aR)	Size	$\mathrm{U}_{\mathrm{N}}(\mathrm{V})$	$I_{N}(A)$	0ty.
Active Front Ends						
SPA205A0-4	FI9	170M6202	3SHT	1250	500	3
SPA385A0-4	Fl10	170M6277	3SHT	1250	1000	3
SPAH10A0-4	Fl13	170M6277	3SHT	1250	1000	3×3
Non-Regenerative Front Ends						
SPN468A0-4	FI9	170M8547	3SHT	690	1250	3

Wiring Diagrams

2.9

Adjustable Frequency Drives

Dimensions

Approximate Dimensions in Inches (mm)
2
SPA9000/SPN9000/SPI9000

Frame	Height	Width	Depth	Weight Lbs (kg)
Active Front Ends				
FI9	$40.6(1030)$	$9.4(239)$	$14.6(372)$	$148(67)$
F110	$40.6(1032)$	$9.4(239)$	$21.7(552)$	$220(100)$
F112	$40.6(1032)$	$2 \times 9.4(2 \times 239)$	$21.7(552)$	$441(200)$
F113	$40.6(1032)$	$27.9(708)$	$21.8(553)$	$674(306)$
F114	$40.6(1032)$	$2 \times 27.9(2 \times 708)$	$21.8(553)$	$1348(612)$

Non-Regenerative Front Ends				
FI9	$40.6(1030)$	$9.4(239)$	$14.6(372)$	$148(67)$
Inverter Units				
FR4	$11.5(292)$	$5.0(128)$	$7.5(190)$	$11(5)$
FR6	$20.4(519)$	$7.7(195)$	$9.3(237)$	$35(16)$
FR7	$23.3(591)$	$9.3(237)$	$10.1(257)$	$64(29)$
FR8	$29.8(758)$	$11.4(289)$	$13.5(344)$	$106(48)$
FI9	$40.6(1030)$	$9.4(239)$	$14.6(372)$	$148(67)$
FI10	$40.6(1032)$	$9.4(239)$	$21.7(552)$	$220(100)$
F112	$40.6(1032)$	$2 \times 9.4(2 \times 239)$	$21.7(552)$	$441(200)$
FI13	$40.6(1032)$	$27.9(708)$	$21.8(553)$	$674(306)$
FI14	$40.6(1032)$	$2 \times 27.9(2 \times 708)$	$21.8(553)$	$1348(612)$

[^0]: (1) See enclosure dimensions beginning on Page V6-T2-217.

